• Title/Summary/Keyword: wastewater reuse technology

Search Result 80, Processing Time 0.021 seconds

Constructed Wetlands in Treating Domestic and Industrial Wastewater in India: A Review (인도의 가정 및 산업 폐수 처리를 위한 인공습지: 총론)

  • Farheen, K.S.;Reyes, N.J.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.23 no.3
    • /
    • pp.242-251
    • /
    • 2021
  • Surface water pollution is a serious environmental problem in developing countries, like India, due to the unregulated discharge of untreated wastewater. To overcome this, the constructed wetlands (CWs) have been proven to be an efficient technology for wastewater treatment. In this study, different existing and experimental facilities were reviewed to be able to determine the current status of constructed wetlands in India. Based on the collected data from published literature, industrial wastewater contained the highest average chemical oxygen demand (COD), biochemical oxygen demand (BOD). In terms of total nitrogen (TN), Total phosphorous (TP), the lowest concentration was found on domestic wastewater. Vertical flow constructed wetlands (VFCW) and Horizontal flow constructed wetland (HFCW) were more effective in removing TSS, BOD, TP in domestic and industrial wastewater, whereas hybrid constructed wetlands (HCW) showed the highest removal for COD. The use of constructed wetlands as advanced wastewater treatment facilities in India yielded better water quality. The treatment of wastewater using constructed wetlands also enabled further reuse of wastewater for irrigation and other agricultural purposes. Overall, this study can be beneficial in evaluating and promoting the use of constructed wetlands in India.

A Study on the development of cleaner production technology in the production of polysaccharide (다당류 생산공정에서의 청정기술개발에 관한 연구)

  • Jun, Yong-Bo;Kim, Kyung-Su;Bae, Woo-Kun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.3
    • /
    • pp.51-59
    • /
    • 2003
  • In this study, the efficiency of M/F(micro filtration) system was investigated about the wastewater generated from the production process of ${\beta}-glucan$. M/F membrane used the pellicon 2 cassette filter module of millipore(USA) for the operation of M/F plant system. Flux was rised as operation pressure increased, and decreased with the operation time. As concentration ratio increased, the recovery of ${\beta}-glucan$, which was remaind in retentate was effective. As the fermentation solution of ${\beta}-glucan$ reused, the conversion ratio was 42.5%, and the status of fermentation was stable. Based on these results, we suggested that permeate was applicable as water reuse in cleaner production technology.

  • PDF

Agent-Based Modeling and Design of Water Reuse Network in Eco-Industrial Park (EIP) (생태산업단지에서 용수재이용 네트워크의 에이전트 기반 모델링 및 설계)

  • Kim, HyunJoo;Yoo, ChangKyoo;Ryu, Jun-Hyung;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.369-375
    • /
    • 2008
  • To achieve zero-emission, one of the main goals of an eco-industrial park (EIP), it is needed to develop an effective water exchange network. The network includes various subsystems and decision making processes, which make the modeling process extremely complicated. Agent-based modeling was used to simulate water exchange network in an EIP. Firm agents were created based on the behavior pattern of firms, and an agent-based model (ABM) was made with the agents, showing the growth of the exchange network. An existing steel and iron making industrial park was chosen as a case study, and the ABM model shows eco-efficient behavior with a decreased environmental cost. Water reuse network based on the ABM model results in 35% decrease of the fresh water supply and 50% reduction of the wastewater generation in EIP. A case study shows that agent-based model can be a powerful tool in modeling and designing complex eco-industrial parks, especially when a part of the system needs to be changed.

Cost analysis of water supply and development of desalination vessel as a drought response (가뭄 시 광역자치단체 별 물 비용 분석 및 해상 이동형 담수화 플랜트 이용 대응 방안 연구)

  • Yang, Hayeon;Koo, Jaewuk;Hwang, Taemun;Jeong, Seongpil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.1
    • /
    • pp.53-60
    • /
    • 2020
  • Due to global climate change, Korea is experiencing flooding and drought severely. It is hard to manage water resources because intensive precipitation during short periods and drought are commonly occurred in Korea, recently. Severe drought occurred in 2015 and 2017 in the islands, and coastal and inland areas in Korea, and the citizens experienced decreased water supply and emergency water service by using bottled water. Therefore, the Korean government provided additional governmental funds such as the grant of drought disaster. In this study, we tried to calculate the cost of water for drought response based on the cost of tap water for the regional local governments in Korea and the grant of drought disaster by the Ministry of the Interior and Safety in Korea, etc. The estimated costs of water for drought responses in coastal and inland areas which have a chance to apply alternative water sources such as brackish or seawater desalination and water reuse in Korea were higher than in other areas in Korea. Additionally, as the novel approach of drought response, the 300 ㎥/day-scale desalination vessel was suggested to provide desalinated water for the islands in Korea. The estimated expenses of water supply for the target island areas (Sinan-gun and Jindo-gun) by the desalination vessel was lower than those by emergency water service by using bottled water.

A study on the TDS removal characteristics in aqueous solution using MCDI module for application of water treatment process (정수처리 공정 적용을 위한 MCDI (Membrane Capacitive Deionization) Module의 수용액 내 TDS 제거 특성에 관한 연구)

  • Oh, Changseog;An, Jusuk;Oh, Hyun-Je
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.4
    • /
    • pp.293-300
    • /
    • 2021
  • Recently, various researches have been studied, such as water treatment, water reuse, and seawater desalination using CDI (Capacitive deionization) technology. Also, applications like MCDI (Membrane capacitive deionization), FCDI (Flow-capacitive deionization), and hybrid CDI have been actively studied. This study tried to investigate various factors by an experiment on the TDS (Total dissolved solids) removal characteristics using MCDI module in aqueous solution. As a result of the TDS concentration of feed water from 500 to 2,000 mg/L, the MCDI cell broke through faster when the higher TDS concentration. In the case of TDS concentration according to the various flow rate, 100 mL/min was stable. In addition, there was no significant difference in the desorption efficiency according to the TDS concentration and method of backwash water used for desorption. As a result of using concentrated water for desorption, stable adsorption efficiency was shown. In the case of the MCDI module, the ions of the bulk solution which is escaped from the MCDI cell to the spacer during the desorption process are more important than the concentration of ions during desorption. Therefore, the MCDI process can get a larger amount of treated water than the CDI process. Also, prepare a plan that can be operated insensitive to the TDS concentration of backwash water for desorption.

Degradation of Chlorophenols and Phenol Mixtures by Cooperative Activities of Chlorophenol-degrading Strains

  • Bae, Hee-Sung;Cho, Young-Gyun;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.43-48
    • /
    • 1997
  • Three strains capable of degrading a chlorophenol were isolated by selective enrichment from soils contaminated with industrial wastewater. A Pseudomonas solanacearum TCP114 could use 2,4,6-trichlorophenol (TCP) as sole carbon and energy source, while two strains of Pseudomonas testosteroni CPW301 and Arthrobacter ureafaciens CPR706 could use 4-CP. All isolates also grew well on phenol. The degradation of one component by a pure strain was strongly affected by the presence of other compounds in the medium, CPW301 and CPR706 entirely lost the ability to degrade 4-CP and phenol in the presence of TCP. TCP114 also lost the ability to degrade phenol when 4-CP was added to the culture medium. These restrictions on the degradability could be overcome by employing defined mixed cultures (TCP114 and one strain of 4-CP degrading strains). All three components were successfully degraded by defined mixed cultures through their cooperative activities. It was also demonstrated that defined mixed cultures could be immobilized by using calcium alginate for the semi-continuous degradation of the three component mixture. Immobilization could not only accelerate the degradation rate, but also allowed the reuse of the cell mass several times without loss of the cells' degrading capabilities.

  • PDF

A study on the optimization of Ion Exchange Resin operating conditions for removal of KCl from CKD extract (CKD 추출액내 KCl 제거를 위한 이온교환수지 조업조건 최적화 연구)

  • Jang, Younghee;Lee, Ye Hwan;Kim, Jiyu;Park, Il Gun;Lee, Ju-Yeol;Park, Byung Hyun;Kim, Seong-Cheol;Lee, Sang Moon;Kim, Sung Su
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1088-1095
    • /
    • 2019
  • The CKD extract is wastewater from which KCl in CKD has been removed to reuse CKD as a cement raw material, and tried to reuse no extracts due to problems such as wastewater treatment facility expansion. As a result of removing KCl by the ion exchange method, the pH of the extract after ion exchange decreased from 12.7 to less than pH 2, and it was confirmed that H+ of the cation exchange resin was dissolved in the extract through ion exchange. In addition, the selectivity of the ion exchange was removed in the order of Ca2+, K+, it was determined that the increase in the contact time to remove the K+ ions. The batch system had a contact time of 6 times or more, compared to the continuous system, and showed 4 times of K+ removal efficiency and 7 times of Cl- removal efficiency. It was showed by analyzing the pH of the extract that more H+ of the cation exchange resin was extracted than OH- of anion exchange resin as the pH of the extract was changed.

Influences of Discharge Waters from Wastewater Treatment Plants on Rice (Oryza sativa L.) Growth and Percolation Water Salinity (폐수처리장 방류수 관개가 벼생육 및 침출수 염농도에 미치는 영향)

  • Shin, Joung-Du;Lee, Jong-Sik;Kim, Won-Il;Lee, Chang-Eun;Yun, Sun-Gang;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.1
    • /
    • pp.24-31
    • /
    • 2003
  • Objective of this study was to assess rice growth and percolation water salinity under the irrigation of the discharge waters from the municipal wastewater treatment plant and from the industrial wastewater treatment plant as alternative water resources during transplanting season. Three kinds of waters were irrigated; the discharge water from an industrial wastewater treatment plant (DIWT), the discharge water from the municipal wastewater treatment plant (DMWT), and groundwater. Concentrations of $COD_{er}$, $NH_4{^+}_-N$, $Mn^{2+}$, and $Ni^+$ in DIWT, SS content and $PO_4-P$ concentrations in DMWT were higher than those of reuse water criteria of other country for agricultural irrigation. The plant height in the irrigation of DMWT was shorter by 2 cm than the groundwater irrigation except for 10 days irrigation. However, the number of tillerings was not significantly different between DMWT and the groundwater. For the harvest index, there were no significant difference between DMWT and DIWT for 20 days irrigation, but slightly higher in DIWT than that of DMWT for 30 days irrigation regardless of soil types. The salinity of percolation water in the rhizosphere with irrigation of DIWT had more twofold than DMWT, but SAR value from DMWT had no significantly different from the groundwater irrigation. The average $EC_i$ values in the rooting zone irrigated with DIWT and DMWT for 30 days after rice transplanting were 4.7 and $3.4dS\;m^{-1}$ in clay loam soil, and were 3.5 and $2.5dS\;m^{-1}$ in sandy loam soil, respectively. There was dramatic decrease in $EC_i$ value at 30 days after rice transplanting even though $EC_i$ of DIWT had more twofold than DMWT. However, $EC_i$ from DMWT had no significant difference from the groundwater. Therefore, it might be considered that there was limited possibility to irrigate DMWT to overcome drought injury of rice transplanting season in paddy field.

Application of RO Membrane Process for Reuse of MBR Effluent (MBR 유출수 재활용을 위한 RO 막분리 공정에 대한 연구)

  • Yoon, Hyun-Soo;Kim, Jong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1391-1398
    • /
    • 2010
  • Reuse feasibility of MBR effluent of S Electronic Company's organic wastewater as a LCD process water was investigated by a $32m^3/d$ pilot-scale RO membrane process. The effects of operating pressure and permeate flux at constant 85% recovery of RO membrane process using MBR effluent were analyzed for transmembrane pressure and period for CIP by membrane fouling as well as rejection of TOC and conductivity. MBR effluent requires additional treatment to meet the LCD process water quality criteria of TOC<1 mg/L and conductivity<$100{\mu}S/cm$ which is stringent as compared with those of conventional reuse water quality criteria. The RO process operated at 85% recovery with stepwise increasing of permeate fluxes from 12.5 LMH to 22.0 LMH was able to meet LCD process water quality criteria. However, the transmembrane pressure increased and the period of CIP decreased as increasing permeability fluxes due to fouling of RO membrane. The optimum operational conditions of RO membrane process were permeate fluxes of 16.5~18.5 LMH with operating pressure of $6.7{\sim}12.4kgf/cm^2$ and CIP period of 20~25 days at constant 85% recovery.

Application of Ultra Rapid Coagulation for Securing Water Resource II: Study of CSO Treatment and Sludge Reuse (수자원 확보를 위한 URC공법의 적용 II: CSO의 처리와 슬러지 재활용에 관한 연구)

  • Park, Se Jin;Yoon, Tai Il;Cho, Kyung Chul;Kim, Chang Gyun
    • Clean Technology
    • /
    • v.6 no.1
    • /
    • pp.39-49
    • /
    • 2000
  • Ultra Rapid Coagulation (URC) can dramatically remove pollutants loaded in wastewater by adding weighted coagulation additives (WCA) and recycling sludge into the coagulation basin to increase settling velocity and surface adsorption ability of floc. Also settling chamber together with lamella plates offers the high rate settling velocity, which can economically treat a considerable amount of pollutants like as combined sewage overflow (CSO) during the heavy rainfall and reduce the pollutants load into the receiving water for securing water source. It was estimated optimal configuration of settling chamber by using fluent model and the possibilities of reusing the sludge generated in this system.

  • PDF