• Title/Summary/Keyword: wastewater activated charcoal

Search Result 6, Processing Time 0.019 seconds

Adsorption Characteristics of Heavy Metals in Wastewater on Bone Charcoal (Bone Charcoal에 의한 폐수증의 중금속 흡착특성)

  • Chung, Paul-Gene;Kwak, Dong-Heui;Lee, Jae-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.555-563
    • /
    • 2000
  • The study was conducted to evaluate the adsorption equilibrium of heavy metals on bone charcoal made of livestock bone which was sintered at $550{\sim}600^{\circ}C$. Analysis of bone charcoal by XRD and FT-IR showed that crystal structure was similar to that of synthetic hydroxyapatite. Adsorption equilibrium capacity of single component (Pb, Cd, and Zn) on bone charcoal could be expressed as Langmuir, Freundlich, and Sips equations. Sips isotherm was best among the three isotherms. The values predicted by IAST(ideal adsorbed solution theory) showed good relationship to the experimental data in multicomponent adsorption equilibrium. Adsorption affinity was in order of Pb, Cd, and Zn. The order was same in case of activated carbon or synthetic hydroxyapatite. Through the study results. it would be expected that bone charcoal made of livestock could be used in field of wastewater treatment plants as adsorbent to remove heavy metal.

  • PDF

Organic Wastewater Treatment by using Bamboo Charcoal (대나무 고온탄을 이용한 유기성 폐수처리)

  • Kim, Sun-Hwa;Kim, Hae-Jin;Kim, Joon-Tae
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.1 s.63
    • /
    • pp.17-27
    • /
    • 2007
  • This study was conducted the adsorption experiment way of organic wastewater (BOD, COD, TOC, T-N, T-P) by changing the carbonization temperature and the size of adsorbent to examine the adsorption capacity of Korean traditional charcoal which has similar characteristics to activated carbon of organic pollutants. Also, it was performed the basic experiment for pH and inorganic materials. As a result of observing Korean traditional charcoal with has the greatest inorganic contents which are the important factor of chemical adsorption. As the carbonization temperature was better high temperature charcoal than law temperature charcoal to adsorption capacity of pollutant and as the particle was minute (D size : $3.35mm{\sim}2.0mm$), it was most effective. The result of adsorption experiment of organic wastewater show that the elimination ratio of pollutants by bamboo high temperature charcoal was found as BOD(82.1%), COD(91.7%), TOC(52.4%), T-N(66.6%), T-P(83.2%) and it has most excellent adsorption capacity of organic pollutants.

Substrate Removal Characteristics for Low Temperature by Biological Activated Carbon (저온에서 생물활성탄의 기질제거특성)

  • Ryu, Seong Ho;Park, Chung Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.2
    • /
    • pp.76-93
    • /
    • 1997
  • Activated carbon is widely used for the treatment of water, wastewater and other liquid wastes. Biological activated carbon (BAC) process is water and wastewater treatment process developed in the 1970's. In addition to activated carbon adsorption, biodegradation organic pollutants occurs in the BAC bed where a large amount of aerobic biomass grows. This results in a long operation time of the carbon before having to be regenerated and thus a low treatment cost. Although the BAC process has been widely used, its mechanisms have not been well understood, especially the relationship between biodegradation and carbon adsorption, whether these two reactions can promote each other or whether they just simultaneously exist in the BAC bed. Also, the phenomenon of bioregeneration has been confused that previously occupied adsorption sites appear to be made available through the actions of microorganisms. And that, because biological process is influenced by low temperature, the mechanism of the BAC process is also effected by temperature variation in our country of winter temperature near the freezing point. Therefore, the objective of this study examines closely the mechanism of the BAC process by temperature variation using phenol as substrate. From this study, biological activated carbon is good substrate removal better than non adsorbing materials (charcoal, sand) as temperature variation, especially low temperature(near $5^{\circ}C$).

  • PDF

Increase of the Treatment Efficiency of a Pharmaceutical Wastewater and a Paperboard Wastewater by the addition of Bacteria (세균첨가에 의한 제약폐수 및 판지폐수의 처리효율의 향상)

  • 이형춘
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.370-374
    • /
    • 2000
  • Some bacterial strains isolated from activated sludges and media and type cultures were cultivated in a pharmaceutical wastewater and a paperboard wastewater and added during batch treatment of those wastewaters in order for these strains to increase the treatment efficiency. Bacillus sp(PC-3) isolated from the charcoal media of the pharmaceutical wastewater plant grew remarkably over there strains in that wastewater and the viable cell count after 24hr cultivation was $1.1{\times}10^6m/L$. Bacillus subtills KCTC 1028 a type strain grew best in the paperboard wastewater and the viable cell count after 24hr cultivation was $1.1{\times}10^7m/L$. Addition of PC-3 in a batch treatment of the pharmaceutical wastewater increased COD removal by 18% after 8 day. And addition of Bacillus subtills KCTC 1028 in a batch treatment of the paperboard wastewater increased COD removal by 14% only after 24hy Bacillus subtills DCTC 1028 was though to be able to be produced economically using alcohol distillery wastewaters from starch material.

  • PDF

Heavy Metal Adsorption Characteristics and Produced of Food Waste Activated Carbon (음식물류 폐기물 활성탄의 제조 및 중금속 흡착특성)

  • Lee, Jun-Hee;Lee, Seung-Chul;Ju, Min;Kim, Ji-Hye;Lee, Don-Gil
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1601-1608
    • /
    • 2015
  • This study evaluates heavy metal(Cu and Cr) adsorption characteristics produced from food waste charcoal extracted in an optimal operation condition after analyzing activated charcoal of iodine adsorption and heavy metals that derived from an activation process of carbide by the developed by-products of food waste treatment facility using the methods from previous studies. As experiment apparatus, this study used a tube-shaped high temp furnace. The mixing ratio of by-products of food waste treatment facility, carbide, and activation component($ZnCl_2$) was 1:1. The experiment was proceeded as adjusting the activation temperature from 400 to $800^{\circ}C$ and activation time from 30 to 120 minutes. The optimal activation condition for iodine absorption was 90 minutes at $700^{\circ}C$ and by using the produced food waste charcoal, this study conducted an experiment on absorption of heavy metals (Cu and Cr) as changing pH of artificial wastewater and stirring time. As a result, pH 7 showed the highest heavy metal decontamination ratio and in terms of stirring time, it revealed balance adsorption after 10 minutes. This result can be particularly applied as basic data for recyclability of high concentration organic waste, by-products of food waste treatment facility, as an food waste charcoal.

Synthesis of Spherical Carbons Containing Titania and Their Physicochemical and Photochemical Properties

  • Oh, Won-Chun;Kim, Jong-Gyu;Kim, Hyuk;Chen, Ming-Liang;Zhang, Feng-Jun;Meng, Ze-Da;Choi, Jong-Geun;Zhang, Kan
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.6-13
    • /
    • 2011
  • In this study, we used activated carbon (AC) and charcoal (CH) as carbon sources with $TiO_2$ powder to prepare spherical carbons containing titania (SCCT) by using phenolic resin (PR) as a bonding agent. The physicochemical characteristics of the SCCT samples were examined by BET, XRD, SEM, EDX, iodine adsorption and compressive strength. The photocatalytic activity was evaluated by measuring the removal efficiency of three kinds of organic dyes: methylene blue (MB), methyl orange (MO) and rhodamine B (Rh.B) under a UV/SCCT system. In addition, evaluation of chemical oxygen demand (COD) of piggery waste was done at regular intervals and gave a good idea about the mineralization of wastewater.