• 제목/요약/키워드: waste wood

검색결과 319건 처리시간 0.025초

표고버섯골목의 재활용에 관한 연구 (II) - 폐골목 세포벽 중의 셀룰로오스 결정의 변태구조 - (A Study of Recycle of Waste Wood After Cultivating Oak Mushroom (II) - On the Structure of Cellulose Crystal Transformation of the Waste Wood -)

  • 김남훈;이원용
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권3호
    • /
    • pp.1-7
    • /
    • 1995
  • The crystal transformation from cellulose I to cellulose II during alkaline swelling of waste wood, which has been used for cultivating oak mushroom(Cortinellus edodes (Berk.) Ito et Imai), was investigated and compared to that of normal wood by a series of X-ray diffraction analysis. When the sapwood of cultivated wood was treated with 20% NaOH solution for 2 hours, the cellulose I can be easily transformed into Na-cellulose I than normal wood or heartwood of cultivated wood. Certainly the formation of Na-cellulose in wood is proportional to alkali swelling duration, and the formation of cultivated sapwood was faster than that of the other woods. Cellulose I in the sapwood of cultivated wood was easily transformed into cellulose II during mercerization, but the sapwood of normal wood and the heartwood of cultivated wood hardly converted to cellulose II. Namely, most of Na-cellulose I in normal wood can be reconverted to cellulose I in the process of washing and drying. Therefore, it can be concluded from this study that in cell wall lignin and hemicellulose can prevent the alkaline swelling of cellulose in wood and the transformation from cellulose I to cellulose II as well.

  • PDF

목질폐잔재 탄화물의 수질정화 효과 (Effect of Carbonized Wastewoods on Purification of Wastewater)

  • 이동욱;김병로
    • Journal of the Korean Wood Science and Technology
    • /
    • 제30권1호
    • /
    • pp.34-39
    • /
    • 2002
  • 국내 주요 간벌재와 목질재료 탄화물중 성능면과 자원면을 고려하여 선정한 후 오수정화 실험을 실시하였다. 덩어리상태(약 3×3×3 cm)의 탄화물의 주방오수 및 정화조오수 정화실험에서 간벌재 탄화물보다 목질재료 탄화물의 정화능력이 뛰어났다. 덩어리상태에서는 미세세공보다는 파티클보드의 파티클 및 MDF의 섬유간의 간극이 정화에 더 유효하게 작용했기 때문이라고 판단된다. 처리오수의 색은 처리 후 옅어졌으며 목질재료탄이 간벌재탄보다 더 옅은 색을 보였다. 냄새는 모두 감소하는 경향을 보였다.

개량(改良)펄프화법(化法) 폐액(廢液)으로 부터 당(糖)의 분리(分離)와 이용(利用) (The Separation and Utilization of Carbohydrates from Waste Liquor in Modified Pulping Process)

  • 이종윤;양재경;황병호;조헌정
    • Journal of the Korean Wood Science and Technology
    • /
    • 제22권2호
    • /
    • pp.19-24
    • /
    • 1994
  • This study was performed to study utilization of separated carbohydrates as well as separation, following analysis of the major components and separation of the carbohydrates in waste liquors of SP, KP, ASAM and AS. The result can be summerized as follows; Inorganic contents in waste liquors increase in this order AS

  • PDF

Exploring a zero food waste system for sustainable residential buildings in urban areas

  • Oh, Jeongik;Lee, Hyunjeong
    • Environmental Engineering Research
    • /
    • 제23권1호
    • /
    • pp.46-53
    • /
    • 2018
  • This study explores the environmentally innovative and low-impact technology, a zero food waste system (ZFWS) that utilizes food waste and converts it into composts or biofuels and curtails carbon emissions. The ZFWS not just achieves food waste reductions but recycles food waste into fertilizer. Based on a fermentation-extinction technique using bio wood chips, the ZFWS was employed in a field experiment of the system installed in a large-scale apartment complex, and the performance of the system was examined. The on-site ZFWS consisted of three primary parts: 1) a food waste slot into which food waste was injected; 2) a fermentation-extinction reactor where food waste was mixed with bio wood chips made up of complex enzyme and aseptic wood chips; and 3) deodorization equipment in which an ultraviolet and ozone photolysis method was employed. The field experiment showed that food waste injected into the ZFWS was reduced by 94%. Overall microbial activity of the food waste in the fermentation-extinction reactor was measured using adenosine tri-phosphate (ATP), and the degradation rate of organic compounds, referred to as volatile solids, increased with ATP concentration. The by-products generated from ZFWS comply with the national standard for organic fertilizer.

폐목질을 사용한 모르터의 강도특성에 관한 실험적 연구 (A Experimental Study on Strength Properties of Mortar using Waste Wood)

  • 황병준;공민호;정근호;김성식;이영도;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문 발표회
    • /
    • pp.73-76
    • /
    • 2003
  • Recently, as the alternatives to preserve environment such as effective usage of wastes or unusable resources are drawing attentions, researches and measures for the two tasks, which are reuse of waste wood and development of eco-friendly materials, are being examined and established in various fields. However, they are still insufficient. Therefore, in this study, for the efficient application of waste woods and eco-friendly effects, mortar was produced using sawdust as the waste wood and mineral material cement for combination, in order to produce inorganic boards using waste woods, which were made when sawing. This study attempted to suggest a basic material about the physical properties of mortar, which used waste woods, after examining the features of wood mixture rate, water-cement rate, congelation according to the mixture rate of the setting accelerator, specific gravity, compression intensity, and bending intensity as experiment factors.

  • PDF

목질세편 세공구조에 따른 음식물쓰레기의 발효·소멸효율 평가 (Evaluation of Fermentation Extinction Rate of Food Waste according to the Various Types of Wood Chip with Different Pore Structures)

  • 오정익;김효진
    • 토지주택연구
    • /
    • 제3권3호
    • /
    • pp.299-305
    • /
    • 2012
  • 음식물쓰레기 발효 소멸용 목질바이오칩의 종류별로 세공구조에 따른 음식물쓰레기 무게 감량율 및 미생물 활동성을 비교분석 하였다. 목질바이오칩을 이용한 음식물쓰레기 발효 소멸실험을 온도 $30{\sim}50^{\circ}C$, 습도 30~70% 조건의 발효 소멸 반응조에 15일간 매일 700~1,500g의 음식물쓰레기를 투입하며 실시하였다. 이 때 1,500g의 목질바이오칩을 발효 소멸 반응조에 초기에 투입하였다. 실험에 사용한 목질바이오칩의 세공구조는 미생물 혼합형(A 바이오칩), $2{\mu}m$ 마크로 세공형(B biochip), $0.1{\mu}m$ 미세공형(C 바이오칩), 점성구조형(D 바이오칩)으로 4가지 유형이었다. 실험결과, A, B, C, D 바이오칩별 발효 소멸에 의한 음식물쓰레기 무게감량율은 각각 85%, 63%, 92%, 73%이었고, C 바이오칩의 경우가 음식물쓰레기 감량율 92%로 최고값을 나타내었다. 또한, C 바이오칩은 ATP/COD $3.00{\times}10^{-10}$, ATP/TN $2.31{\times}10^{-11}$로 상대적으로 타 종류의 바이오칩보다 높은 결과를 나타내었다. 이는 발효 소멸반응에서 발생되는 미생물의 서식지를 충분히 제공하여 ATP/COD 및 ATP/TN이 높아졌고 미생물의 활동성이 강화되어 발효 소멸반응이 원활하게 진행된 결과에 기인하는 것으로 분석되었다.

사업장계 폐목재의 흐름 분석을 통한 처리비용영향 검토 (Assesment of the industrial Wood Waste Disposal Cost through Analysis of the Treatment Flow)

  • 김제남;김수진;배재근
    • 유기물자원화
    • /
    • 제20권3호
    • /
    • pp.34-40
    • /
    • 2012
  • 본 연구는 사업장 폐기물 중 폐목재에 대한 발생량, 처리량, 운반경로 및 이산화탄소배출량, 타지역으로의 처리를 위한 운반비용 등의 흐름에 대하여 조사를 하였으며 분석된 결과를 가지고 지역에 적합한 폐목재 처리망에 대하여 검토를 하였다. 폐목재에 흐름에 대한 분석한 결과, 전체 지역 중 일부분은 지역내에서 효율적으로 처리가 이루어질 수 있음에도 불구하고 먼 지역까지 이송되어 처리되는 부적절한 처리 경로를 보이는 것으로 조사 되었다. 폐목재 흐름경로를 최적화 할 수 있는 가장 합리적인 방법은 폐목재 재활용업체들이 분포되어 있는 지역을 중심으로 하여 업체의 집단화 형식으로 조성하여, 폐기물 발생원의 근거리에 있는 재활용업체에서의 우선처리원칙이 필요하며, 필요에 따라 인근 지역의 폐기물을 동시에 처리 할 수 있는 광역처리체계 도입이 타당하다.

목재의 연소특성(1) (질량감소와 착화지연) (Combustion Characteristics of Wood Materials (1) (Mass Reduction and Ignition Delay))

  • 김춘중
    • 한국연소학회지
    • /
    • 제4권2호
    • /
    • pp.11-22
    • /
    • 1999
  • Combustion characteristics of the wood chips(balsa chips) were experimentally investigated with respect to the thermal recycle system of the urban waste. The urban waste contains plastics, vegetable and wood materials. Wood was chosen as an example of the one of the component of urban dust. A small wood chip was burned in a electric furnace by the micro-electric balance. The mass reduction rate was normalized by the initial mass of test piece and the time of volatile combustion end. When the mass of the wood chips(balsa chips) was larger than 0.5g, the combustion similarity was found on the normalized mass reduction rate.

  • PDF

목질폐잔재를 재활용한 목질보도블록 제조기술 개발 (A Development of Manufacturing Process of Wooden Footpath Block to Reuse of Wood Waste)

  • 박희준
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권3호
    • /
    • pp.96-104
    • /
    • 1997
  • The objective of this research project was to develop the wooden footpath block to reuse of wood waste. Some physical and mechanical properties of the wooden block such as water absorption, thickness swelling, modulus of rupture, internal bond, density profile and impact resistance were studied. Water absorption and thickness swelling of the wooden block were greatly reduced when the wooden block was pressed inside the forming device than by conventional hot pressing. Also, Modulus of rupture and internal bond of the wooden block were increased greatly when the pressing was completed inside the forming device. The density profile of the wooden block was improved up to 93.5%, minimum to average density ratio. The wooden block manufactured in this study have excellent physical and mechanical prperties in comparison with existing wood based materials. So, these wooden blocks are applicable to footpth block or other exterior members.

  • PDF

Effects of Nanoclay and Glass Fiber on the Microstructural, Mechanical, Thermal, and Water Absorption Properties of Recycled WPCs

  • Seo, Young-Rok;Kim, Birm-June;Lee, Sun-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권4호
    • /
    • pp.472-485
    • /
    • 2019
  • When wood plastic composites (WPCs) have been used for a certain period of time, they become waste materials and should be recycled to reduce their environmental impact. Waste WPCs can be transformed into reinforced composites, in which fillers are used to improve their performance. In this study, recycled WPCs were prepared using different proportions of waste WPCs, nanoclay, and glass fiber. The effects of nanoclay and glass fiber on the microstructural, mechanical, thermal, and water absorption properties of the recycled WPCs were investigated. X-ray diffraction showed that the nanoclay intercalates in the WPCs. Additionally, scanning electron micrographs revealed that the glass fiber is adequately dispersed. According to the analysis of mechanical properties, the simultaneous incorporation of nanoclay and glass fiber improved both tensile and flexural strengths. However, as the amount of fillers increases, their dispersion becomes limited and the tensile and flexural modulus were not further improved. The synergistic effect of nanoclay and glass fiber in recycled WPCs enhanced the thermal stability and crystallinity ($X_c$). Also, the presence of nanoclay improved the water absorption properties. The results suggested that recycled WPCs reinforced with nanoclay and glass fiber improved the deteriorated performance, showing the potential of recycled waste WPCs.