• 제목/요약/키워드: waste treatment facilities

검색결과 189건 처리시간 0.029초

Solubilization of wasted sludge using high voltage impulse technique (고전압 임펄스 기술을 활용한 슬러지 가용화)

  • Cho, Seung-Yeon;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제31권3호
    • /
    • pp.257-262
    • /
    • 2017
  • Several disposal processes for waste sludge from wastewater treatment plants such as landfill, ocean dump, incineration, reuse as fuels or fertilizers are practiced. However, ocean dumping is prohibited by international treat. New constructions of landfill sites or incineration facilities are limited by NIMBY and reuse processes are still suffering from low energy yield. Therefore, development of alternative processes for sludge disposal are currently needed. In this study, alternative technique for sludge solubilization using HVI (high voltage impulse) was suggested and verified experimentally. Sludge solubilization was carried out for 90 minutes using HVI discharge with peak voltage of 16 kV and pulse duration for 40 microsecond. About 3~9 % of MLSS and MLVSS concentration were reduced, but the soluble COD, TN, TP of the sludge increased to 372 %, 56 % and 102 % respectively. It indicates that the flocs and/or cells of the sludge were damaged by HVI. These resulted in flocs-disintegration and cells-lysis, which means the internal matters were bursted out of the flocs as well as the cells. Thus, electrical conductivity in bulk solution was increased. All of the results verified that the HVI could be used as an alternative technique for sludge solubilization processes.

Combustion Study of 1MWe Circulating Fluidized Boiler for RDF (1MWe급 순환유동층 열병합 보일러 운전연구)

  • Shun, Do-Won;Bae, Dal-Hea;Jo, Sung-Ho;Lee, Seung-Yong
    • Korean Chemical Engineering Research
    • /
    • 제50권5호
    • /
    • pp.837-842
    • /
    • 2012
  • A pilot scale circulating fluidized boiler (CFB) for refuse derived fuel (RDF) is designed and constructed to demonstrate a performance of CFB technology for waste fuel utilization. The boiler has a design capacity of 6 MWth with $400^{\circ}C$ 38 ata steam generation performance. The maximum steam rate of the boiler was about 8 ton/h. The main component of the fuel was RDF (Refuse Derived Fuel) with high volatile contents and showed fast ignition and easy combustion. The pilot plant showed over 99.5% of combustion efficiency. Stable operation of RDF CFBC depended on the content of non combustion materials other than ash and fast removal of them. Emission level was under legal limit except that of HCl without external flue gas treatment facilities. Also about 60% of fuel chlorine was absorbed to fly ash particles. For HCl emission control flue gas treatment technology is required such as wet and dry scrubber in order to comply with Korean regulation.

Characteristics of Particle Size Distribution in the Organic Fraction of Municipal Solid Waste by the Reaction of Super-heated Steam (과열증기 반응에 의한 생활폐기물 유기성분 입도특성)

  • Jang, Ha-Na;Min, Tai-Jin;Roh, Seon-Ah;Kim, Woo-Hyun;Sung, Hyun-Je;Park, Seong-Bum
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • 제18권4호
    • /
    • pp.64-68
    • /
    • 2010
  • Recently, MBT(Mechanical Biological Treatment) facilities were built up and operated to separate and recycle MSW(Municipal Solid Wastes)in South Korea. However, the size distribution of MSW is very rough, and it is causing operation problem because MSW would be crushed in undersize diameter by mechanical equipment before feeding each seperation process. Also, the organic material should be pre-seperated to reuse recycle material in MSW. In this research, the reactor of 1ton/batch using the super-heated steam was tested to present the separation efficiency and the size distribution of MSW by experimental factors.

The Effect of Solubilization Pretreatment Process on Anaerobic Digestion of Waste Activated Sludge (전처리 가용화 공정이 잉여슬러지 혐기성 소화효율에 미치는 영향)

  • Yoo, Ho-Sik;Ahn, Seyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • 제24권3호
    • /
    • pp.35-43
    • /
    • 2016
  • COD properties of waste activated sludge (WAS) were investigated for various solubilization rate of mechanical pretreatment method in anaerobic digestion process. Inert COD was 37.0% of total COD in untreated WAS. Particulate biodegradable COD was converted to soluble biodegradables and particulate unbiodegradables as solubilization was processed. Particulate unbiodegradable portion of COD in WAS can be increased as particulate biodegradable portion is decreased in case of relatively long SRT of biological treatment. Thus, COD properties of WAS should be investigated in case of relatively low particulate biodegradable COD, because of possible low effect of solubilization. COD removal rate in anaerobic digester was enhanced as much as 2.1% and 15.1% for solubilization rate 5% and 35% due to pretreatment, respectively. COD removal rate was increased from 25% to 40%, and methane gas generation was increased from $607m^3/d$ to $907m^3/d$ as particulate COD of WAS was solubilized to 35% in pretreatment facilities.

Evaluation of ammonia emission reducing effect by adding waste cooking oil in pilot-scale composting of dairy cattle manure

  • Kazutaka Kuroda;Akihiro Tanaka;Kenichi Furuhashi;Naoki Fukuju
    • Animal Bioscience
    • /
    • 제36권10호
    • /
    • pp.1612-1618
    • /
    • 2023
  • Objective: In our previous study, we observed that the addition of waste cooking oil (WCO) reduced ammonia (NH3) emissions during laboratory-scale composting of dairy cattle manure under low-aeration condition. Therefore, this study aimed to evaluate the effect of addition of WCO on NH3 emissions reduction during pilot-scale composting of dairy cattle manure, which is close to the conditions of practical composting treatment. Methods: Composting tests were conducted using pilot-scale composting facilities (1.8 m3 of capacity). The composting mixtures were prepared from manure, sawdust, and WCO. Two treatments were set: without WCO (Control) and with WCO added to 3 wt% of manure (WCO3). Composting was conducted under continuous aeration at 40 L/min, corresponding to 22.2 L/(min·m3) of the mixture at the start of composting. The changes in temperatures, NH3 concentrations in the exhaust gases, and contents of the composted mixtures were analyzed. Based on these analysis results, the effect of WCO addition on NH3 emissions and nitrogen loss during composting was evaluated. Results: During composting, the temperature increase of the composting mixture became higher, and the decreases of weight and water content of the mixture became larger in WCO3 than in Control. In the decrease of weight, and the residual weight and water content of the mixture, significant differences (p<0.05) were detected between the two treatments at the end of composting. The NH3 concentrations in the exhaust gases tended to be lower in WCO3 than in Control. Nitrogen loss was 21.5% lower in WCO3 than in Control. Conclusion: Reduction of NH3 emissions by the addition of WCO under low aeration condition was observed in pilot-scale composting, as well as in laboratory-scale composting. This result suggests that this method is effective in reducing NH3 emissions in practical-scale composting.

Fraction and Geoaccumulation Assessment Index of Heavy Metals in Abandoned Mines wastes (휴폐광산 지역에서 폐석의 중금속 존재 형태와 지화학적농축계수 평가)

  • Kim Hee-Joung;Park Byung-Kil;Kong Sung-Ho;Lee Jai-Young;Ok Yong-Sik;Jun Sang-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • 제10권6호
    • /
    • pp.75-80
    • /
    • 2005
  • Several metalliferous including Guedo mine, Manjung mine and Joil mine located at the upper watershed of Namhan river, were abandoned or closed since 1988 due to the mining industry promotion policy and thus disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in soil pollution. In this research, total and fractional concentrations of heavy metals in mining wastes were analyzed and accordingly the degree of soil pollutions in the abandoned mine area were quantitatively assessed employing the several pollution indices. The mining waste samples from Guedo mine, Manjung mine and Joil mine recently abandoned were collected for the evaluation of the potential of water pollution by mining activities. Index of geoaccumulation fractional composition and removal efficiency of some heavy metals by different concentration of HCl treatment were analyzed. Index of geoaccumulation of Cd, Pb, Zn, Cu, Ni and Cr are 6, $4\~6,\;0\~6,\;4\~5$, 2 and 0 respectively. The index of geoaccumulation of Cd, Pb, Zn and Cu reveals the mining wastes has high pollution potential in the area. According to sequential extraction of metals in the mine wastes organic fraction of Cu, reducible fraction of Pb, residual fraction of Ni and Zn were the most abundant fraction of heavy metals in mining wastes.

Improvement of Salt Accumulated Soil and Crop Growth using Coal Ash (석탄회를 이용한 염류집적 토양 개선과 작물 생육 증진)

  • Lee, Jong Cheol;Oh, Se Jin;Kang, Min Woo;Kim, Young Hyun;Kim, Dong Jin;Lee, Sang Soo
    • Korean Journal of Environmental Agriculture
    • /
    • 제40권2호
    • /
    • pp.83-91
    • /
    • 2021
  • BACKGROUND: Cultivation area using agricultural plastic film facilities in Korea is rapidly increasing every year; however, it accelerates the salt accumulation in soils due to repeated cultivation and excessive use of chemical fertilizers. Coal ash contains various trace elements and has high potential to be used in agricultural purposes. This research was aimed to improve the quality of salts-accumulated soils and crop growth grown in the plastic film facilities using the soil amendment derived from coal ash and zero-valent iron powder. METHODS AND RESULTS: Soil amendment used in the study was manufactured using coal ash with iron powder and subjected to a typical upland soil for soil quality enhancement and two salts-accumulated soils for crop growth. After one month incubation of the salts-accumulated soils treated with the soil amendment, soil pH increased significantly and soil EC decreased by approximately 50%, compared to the control or the treatment without the soil amendment. Since the soil salts' concentration is proportional to EC, the subjected soil amendment can be proposed as an effective way to overcome soil salts accumulation in agricultural plastic film facilities. For crop growth, the length of roots and stems increased by approximately 10% and the dry weight also increased by a maximum of 75%, compared to the control. CONCLUSION: The soil amendment made from waste resources such as coal ash and zero-valent iron was found to not only be effective in improving salt-accumulated soils and crop yield but also be safe against harmful heavy metals.

Development of Liquid Metal Passive Cooling Flow Simulation System (액체금속 피동냉각유동모사 실증설비의 개발)

  • Ryu, Kyung-Ha;Kim, Jae-Hyoung;Lee, Tae-Hyun;Lee, Sang-Hyuk;Bahn, Byoung-Min
    • Transactions of the KSME C: Technology and Education
    • /
    • 제3권4호
    • /
    • pp.257-264
    • /
    • 2015
  • To maintain sustainability of nuclear energy as an important energy source, both safety problem and Spent Nuclear Fuels(SNFs) problem should be solved. In case of Gen-IV reactors such as fast reactor, SNFs can be used as fuels by using fast neutrons. It can be a suitable treatment method of high-level waste in near future. Liquid metals such as Sodium or Lead-Bismuth Eutectic (LBE) can be possibly used as a coolant to use fast neutrons. In this paper, it was described that natural circulation parameter studies, design analyses, material selections and a completion of facilities. To develop a natural circulation facility, thermal hydraulic analyses were performed. Installation technique of liquid metal natural circulation were secured.

Assessment of Water Pollution by the discharged water of the Abandended Mine

  • Kim, Hee-Joung;Yang, Jae-E.;Lee, Jai-Young;Park, Beang-Kil;Choi, Sang-Il;Jun, Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.167-174
    • /
    • 2004
  • Several metalliferous and coal mines, including Myungjin, Seojin and Okdong located at the upper watershed of Okdong stream, were abandoned or closed since 1988 due to the mining industry promotion policy and thus disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in water pollution in the downstream areas. AMD and waste effluents from the closed coal mines were very strongly acidic showing pH ranges of 2.7 to 4.5 and had a high level of total dissolved solid (TDS) showing the ranges of 1,030 to 1,947 mg/L. Also heavy metal concentrations in these samples such as Fe, Cu, Cd and anion such as sulfate were very high. These parameters of AMD and effluents were considered to be highly polluted as compared to those in the main stream area of the Okdong river and be major pollutants for water and soil in tile downstream area. Pollution indices of the surface water at the upper stream of Okdong river where AMD of the abandoned coal mines was flowed into main stream were in the ranges of 16.3 to 47.1. On the other hand, those at the mid stream where effluents from tailing dams and coal mines flowed into main stream were in tile ranges of 10.6 to 19.5. However, those at the lower stream were ranged from 10.6 to 14.9 These results indicated that mining wastes such as AMD and effluents from the closed mines were tile major source to water pollution at the Okdong stream areas.

  • PDF

A Study on the Architectural Planning of Material Handling System for the Airborne Infection Isolation Hospitals (호흡기 감염 격리병원의 물류시스템 계획에 관한 연구)

  • Choi, Kwangseok;Kwon, Soon Jung
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • 제23권2호
    • /
    • pp.63-72
    • /
    • 2017
  • Purpose: The purpose of this study is to review the material handling system of the Airborne Infection Isolation Hospitals which is the one of the key elements of infection control and to improve the basic data for the planning and design of those facilities. Methods: Research was conducted by literature reviews and case studies for the material handling system of domestic and foreign Isolation hospitals. Results: The result of this study can be summarized into three points. First, a general isolation unit and a high level isolated unit need to be distinguished in terms of efficiency and safety. In particular, it is desirable that a high level isolated unit have to completely separate clean and soiled circulations, and soiled corridor should be installed by those means. By doing this, the medical staff can observe patient rooms and supply clean materials directly in the clean zone without wearing PPE, so that safety and work efficiency can be improved at the same time. Second, for the safe disposal of wastes, it is desirable to install a dedicated sterilizer per ward and sterilize it at least in the ward. In addition, It is desirable to install a central waste treatment room and a dedicated soiled corridor in consideration of the inadequate handling capacity and emergency situation. Third, the characteristics of material flow chart in the negative pressured isolation hospitals and the corresponding material handling system have been presented. Implications: Infection control is very important in safety, but it is necessary to respond to the symptoms of the patient.