• Title/Summary/Keyword: waste tire rubber

검색결과 56건 처리시간 0.02초

Stability Analysis of Dunnage for Transportation of a Steel Roll Coil using Powder of Waste Tire and Cord-rubber Scrap (폐타이어 고무분말과 코드-고무 스크랩을 이용한 철재 롤코일 선박운송용 Dunnage 안정성 해석)

  • Kwac, Lee-Ku;Kim, Hang-Woo;Ha, Jae-Ho;Kim, Jae-Yeol;Kim, Hong-Gun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • 제15권6호
    • /
    • pp.22-31
    • /
    • 2006
  • When ironwork, especially steel roll coil, is transported to customers, land transportation and sea transportation are usually used. To transport steel roll coil fast and safe without damaging it, it is necessary that the steel roll coil has to be in stable condition. These days, apitong, which is all imported from overseas, is being used to support the steel roll coil, but because of apitong's rigidity, it damages the coil and when the coil is damaged, it is hard to fix. Due to the fact that recovering damage of the coil is almost impossible, we have to find the new type of dunnage that can substitute the apitong. In this paper, the arrays and the kinds of reinforcements, and rectangular type and trapezoid of dunnage will be talked about. The phenomenon of rolling and the impact when the carrier start moving and stop will be talked about as well. Therefore, we are going to develop a dunnage that does not damage ironwork and has better recovery and softness than existing apitong dunnage.

Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models

  • Ozcan, Giyasettin;Kocak, Yilmaz;Gulbandilar, Eyyup
    • Computers and Concrete
    • /
    • 제19권3호
    • /
    • pp.275-282
    • /
    • 2017
  • The aim of this study is to build Machine Learning models to evaluate the effect of blast furnace slag (BFS) and waste tire rubber powder (WTRP) on the compressive strength of cement mortars. In order to develop these models, 12 different mixes with 288 specimens of the 2, 7, 28, and 90 days compressive strength experimental results of cement mortars containing BFS, WTRP and BFS+WTRP were used in training and testing by Random Forest, Ada Boost, SVM and Bayes classifier machine learning models, which implement standard cement tests. The machine learning models were trained with 288 data that acquired from experimental results. The models had four input parameters that cover the amount of Portland cement, BFS, WTRP and sample ages. Furthermore, it had one output parameter which is compressive strength of cement mortars. Experimental observations from compressive strength tests were compared with predictions of machine learning methods. In order to do predictive experimentation, we exploit R programming language and corresponding packages. During experimentation on the dataset, Random Forest, Ada Boost and SVM models have produced notable good outputs with higher coefficients of determination of R2, RMS and MAPE. Among the machine learning algorithms, Ada Boost presented the best R2, RMS and MAPE values, which are 0.9831, 5.2425 and 0.1105, respectively. As a result, in the model, the testing results indicated that experimental data can be estimated to a notable close extent by the model.

Chemical Devulcanization for the Recycling of Rubber Powder of Waste Tires and Mechanical Properties (폐타이어 고무분말 재활용을 위한 화학적 탈황과 기계적 물성 평가)

  • An, Ju-Young;Park, Jong-Moon;Bang, Daesuk;Kim, Bong-seok;Oh, Myung-Hoon
    • Resources Recycling
    • /
    • 제24권3호
    • /
    • pp.59-65
    • /
    • 2015
  • Recycling of vulcanized rubber products is a serious problem in the world. A quantity of generated waste tires becomes much more and more because of increasing demands on automobiles, resulted in the cause of serious secondary pollution by sulfur component that is crosslinked to incineration or landfill. In addition, crosslinked surfur is used to interfere with the binding of the raw material rubber. In this study, we analyzed the degree of devulcanization by the chemical devulcanization. Devulcanization ratio of the samples were systematically analysed by variables such as time and temperature. In addition, the effect of swelling method as a pre-treatment process was also measured. A rubber specimen was deepened in a organic 2-buthanol solutions during various times of 1 ~ 5 hrs at 100, 150, $200^{\circ}C$ respectively, then to calculate the crosslink density and the number average molecular weight by using a parallel expansion process, which showed devulcanization degree of analyzed samples quantitatively. Also, the mechanical properties were measured with the samples prepared by using a hot press.

Damping Characteristics of Polyurethane Composites Incorporating Recycled Rubber Particles and Aggregates (폐타이어 고무분말과 골재를 혼입한 폴리우레탄 복합재료의 감쇠 특성)

  • Park, Se Eon;Choi, Jeong-Il;Hwang, Jae-Seung;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제8권3호
    • /
    • pp.263-268
    • /
    • 2020
  • The purpose of this study is to investigate the damping properties of polyurethane composites incorporating waste tire rubber powder and preplaced coarse aggregates. Four types of polyurethane-based composites were manufactured, and longitudinal impact tests were performed. And vibration signals in the time domain and frequency domain were measured and values of damping ratio for each specimen were calculated. Test results showed that the damping ratios of polyurethane composites, in which the amount of polyurethane was reduced by 10.6% and 21.2% through incorporation of rubber particles, were 8.4% and 4.6% lower than that of pure polyurethane. The damping ratio of the polyurethane composite produced in a similar manner to the prepact concrete production method was found to be 22% lower than that of pure polyurethane, however, the amount of polyurethane was reduced by 50% and the stiffness was 25.7 times higher than that of pure polyurethane.

Recent Status and Progress of Radiation Processing in the World (방사선처리기술 최근 동향)

  • Lee, Yun Jong;Lee, Byoung Hun;Im, Don-Sun;Kim, Jae-Ho;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • 제2권1호
    • /
    • pp.43-51
    • /
    • 2008
  • Radiation technology is currently used in a number of industrial processes such as sterilization, cross linking of polymer, food irradiation, rubber vulcanization in the tire manufacturing, contaminated medical waste, etc. Gamma ray and electron beam are the key examples of well-established economical applications of radiation processes. The purpose of this paper is to review the recent technological trends and activities for radiation processes in order for the industrial end users to better understand, and obtain useful information about the technology. It is clear that the radiation processing technology has potential for a variety of the industrial applications.

Current Effective Recycling and Application Methods in Construction Waterproofing Industries (건설방수산업분야에서의 유효자원 재활용 및 응용 기술 현황)

  • Park, Jin-Sang;Kim, Sun-Do;Park, Wan-Goo;Kim, Dong-Bum;Lee, Jong-Yong;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제4권1호
    • /
    • pp.31-37
    • /
    • 2016
  • This paper intends to analyze the roles of regulations and certifications within the construction market that affect the effective recycling and application methods of construction waterproofing industries. Certifications, eco-labels, green certification patents, and new excellent technologies obtained in construction waterproofing industries are studied. In accordance to the study results, it was determined that, a total of 38 items obtained eco-labels with effective recycling as the theme, 10 items with green certifications, and 8 items with New Excellent Technologies. Regarding the types of effective recycled resources, most of them were concerned with composite-polymer(EVA, PVC, etc.) materials, waste tire powder, waste rubber, etc., which indicated that there is a clear limitation in the variety of the materials that are eligible for effective recycling in the construction waterproofing industries.