• Title/Summary/Keyword: waste shells

Search Result 79, Processing Time 0.019 seconds

Pretreatment of Livestock Wastewater containing PO4-3-P with Waste Oyster Shells (폐굴껍질을 이용한 축산폐수중 무기인의 1차 처리)

  • Kim, Eun-Ho;Kim, Seok-Tack;Jang, Sung-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.1
    • /
    • pp.48-53
    • /
    • 1999
  • In this study, various batch tests were performed to examine the utilization of waste oyster shells for removal of $PO_4^{3-}-P$ in livestock wastewater, because waste oyster shells have been known to be very porous and to have alkaline minerals such as calcium and mangnesium. $PO_4^{3-}-P$ removal rate were increased by waste oyster shells, as specific surface area and contact efficiency per unit area of their were increased. Generally, it could be showed that $PO_4^{3-}-P$ removal rate were very influenced by particle size, dosage and temperature. At low pH of initial reactions, it would be showed that $PO_4^{3-}-P$ removals were directly influenced by adsorption but crystallization process were dominated with passed time and pH increasing. The SEM observed that the variations were hardly seen, but particle sizes of waste oyster shell were relatively big after reactions and showed forms of smaller plate than before reactions.

  • PDF

Morphologies of Aragonite Synthesized from Scallop Shells and Lime Stones by Successive Reaction

  • Keiko Sasaki;Hiroyuki Kobayashi;Yoo, Kyoung-Keun;Masami Tsunekawa
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.331-336
    • /
    • 2001
  • Aragonite type of precipitated calcium carbonate was synthesized by the successive reaction with hybridization of waste scallop shells with limestone. In the first step, carbonation was performed by using calcined limestone with low brightness, followed by the additional carbonation using calcined-hydrous scallop shells with high brightness. The temperature and the amount ratio of calcined limestone to calcined-hydrous scallop shells were examined as parameters in the experimental conditions. The products were characterized by XRD, SEM. in addition to measurements of brightness index. the specific surface area, and bulk density. The amount ratio of limestone to scallop shell affected not only the brightness but also morphologies of products. The increase in relative amounts of limestone leads to decrease in brightness and bumpy surface of particles. High temperature reaction produces aragonite particles with longer sizes and higher bulk densities. This study has made an attempt to establish the synthesis of aragonite with high brightness and high strength by utilization of waste scallop shells.

  • PDF

Consolidation to Bulk Ceramic Bodies from Oyster Shell Powder (굴 패각 분말로부터 벌크 세라믹 구조체 제조)

  • Cho, Kyeong-Sik;Lee, Hyun-Kwuon;Min, Jae Hong
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.221-227
    • /
    • 2016
  • Waste oyster shells create several serious problems; however, only some parts of them are being utilized currently. The ideal solution would be to convert the waste shells into a product that is both environmentally beneficial and economically viable. An experimental study is carried out to investigate the recycling possibilities for oyster shell waste. Bulk ceramic bodies are produced from the oyster shell powder in three sequential processes. First, the shell powder is calcined to form calcium oxide CaO, which is then slaked by a slaking reaction with water to produce calcium hydroxide $Ca(OH)_2$. Then, calcium hydroxide powder is formed by uniaxial pressing. Finally, the calcium hydroxide compact is reconverted to calcium carbonate via a carbonation reaction with carbon dioxide released from the shell powder bed during firing at $550^{\circ}C$. The bulk body obtained from waste oyster shells could be utilized as a marine structural porous material.

Environmental Effect of the Coffee Waste and Anti-Microbial Property of Oyster Shell Waste Treatment

  • Thenepalli, Thriveni;Ramakrishna, Chilakala;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.39-49
    • /
    • 2017
  • Coffee is one of the most popular and consumed beverages in the world, which leads to a high contents of solid residue known as spent coffee grounds (SCG). As is known, coffee beans contain several classes of health related chemicals, including phenolic compounds, melanoidins, diterpenes, xanthines and carotenoids. The waste water coming out of coffee industries has high concentration of organic pollutants and is very harmful for surrounding water bodies, human health and aquatic life if discharged directly into the surface waters. Hence it is essential to treat and manage the coffee waste. Oyster shells are a waste product from mariculture that creates a major disposal problem in coastal regions of southeast Korea. In the study, the oyster shell waste was used to treat the coffee waste and its effluents. Oyster shells are calcined at $1000^{\circ}C$ for 2 h, and allowed to test the calcined CaO powder ability to inhibit the growth of bacteria in different aging coffee wastes. Calcined oyster shell powder showed anti-bacterial effect that inhibited cell growth of Escherichia coli and other bacterial forms. The antimicrobial activity of calcium oxide from oyster shell waste for biological treatment and utilization as a fertilizers with economic ecofriendly in nature.

Neutralization and removal of heavy metal ions in Plating wastewater utilizing Oyster Shells (굴껍질을 이용한 도금폐수의 중화 및 중금속 이온 제거)

  • 성낙창;김은호;김정권;김형석
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.81-87
    • /
    • 1996
  • The purpose of this research is to examine the utilization of oyster shells for neutralization and removal of heavy metal ions in plating wastewater, because oyster shells have been known to be very porous, to have high specific surface area and to have alkaline minerals such as calcium and magnesium. The results obtianed from this research showed that oyster shells had a buffer capacity to neutralize an acidic.alkali system in plating wastewater. Generally, it could be showed that the removal efficiencies of heavy metal ions were very influenced by reaction times and oyster shell dosages. In point of ocean waste, if oyster shells substituted for a valuable adsorbent such as actviated carbon, they could look forward to an expected economical effect.

  • PDF

Development of Eco-friendly Binder Using Oyster-Shell and Their Applications (친환경 굴껍질 고화재$^{(R)}$ 개발 및 적용성 연구)

  • Yoon, Gil-Lim;Chae, Kwang-Seok;Baek, Seung-Cheol;Yoon, Yeo-Won;Lee, Kyu-Hwan;Kim, Jae-Kwon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.553-560
    • /
    • 2005
  • An experimental investigation was carried out to study recycling possibility of waste oyster shells, which induce environmental pollutions from piling up out at the open or the temporary reclamation. The purpose of this paper is to develop eco-friendly binder using waste oyster shells, and to investigate their reinforcing effects for dredged soil improvement. A series of laboratory tests including compressive strength tests were performed to evaluate strength characteristics of soils treated by developed binder with varying water content of dredged soils, mixing rates of binder, and different curing days. Based on laboratory test results, eco-friendly binders developed here using waste oyster shells were found as good resource materials for soft soil improvements.

  • PDF

Characterization of the mixed soil with waste and application to geotechnical field (폐기물을 포함한 혼합토의 특성 및 지반공학분야에의 응용)

  • 이기호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.11a
    • /
    • pp.72-84
    • /
    • 2001
  • In order to utilize mass of oyster shells for a partial substitute material for reclamation, we investigate the shear characteristics of dredged sluge mixed with oyster shells. the apparent modulus of elasticity of the this mixture are obtained from the triaxial compression tests and is utilized to characterize the apparent modulus of elastic of the oyster shells by carrying out some numerical analysis based upon the homogenization theory. We got the conclusion by a series of experiment, 1) It is verified that modulus of elasticity of dredged clay is improved by mixing with oyster shells. 2) The homogenization method for deducing apparent modulus of elasticity of oyster shells, which can consider micro-structure of mixed soil, is introduced. The elastic modulus is affected from the skeleton structure of oyster shell. The effect of 49kPa is bigger than that of 98kPa.

  • PDF

Preparation and Characterization of Various Chitin from Protunus Trituberculatus Shells Such As Waste Marine Sources (수산계 폐자원인 꽃게껍질로부터의 다양한 키틴의 제조)

  • 김종완;황성규;이기창;이한섭;박종주
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.11-17
    • /
    • 1998
  • Chitin is known as biodegradable natural polymer. In spite of various application of chitin derivatives from waste marine sources, commercial use of chitin has been limited due to high resistance to chemicals and the absense of proper solvents. We chitin prepared through the decalcification, bleaching and deproteination from Protunus trituberculatus shells by change of Hackman's method. Also, Microcrystalline chitin made by hydrolysis that was reduce made of resistance solvents used by dilute hydrochloric acid, ultrasonic and hydrogen peroxide. Crosslinked chitin derivatives were preparaed from chitin with crosslink agents(epichlorohydrin, 1,3-dichloropropanol) follwed by crosslinkage at 6C position. The effects of these parameters on chitin dervatives were invastigated by IR, DSC, XRD, BET, PSA and SEM. SEM analysis showed that both chitin and crosslinked chitin had a particle shaped morphology.

  • PDF

Evaluation of Long-Term Performance of Concrete Blended with Industrial Waste(Oyster Shell) (산업폐기물(굴패각)을 혼입한 콘크리트의 장기성능 평가)

  • 김학모;양은익;이성태;정용일;최중철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.227-232
    • /
    • 2002
  • To evaluate the practical application of oyster shells as construction materials, an experimental study was performed. More specifically, the long-term mechanical properties and durability of concrete blended with oyster shells were investigated. Test results indicate that long-term strength of concrete blended with 10% oyster shells is almost identical to that of normal concrete. However, the long-term strength of concrete blended with 20% oyster shells Is appreciably lower than that of normal concrete. 1'hereby, concrete with higher oyster shell has the possibility giving a bad influence on the concrete long-term strength. Elastic modulus of concrete blended with crushed oyster shells decreases as the blending mixture ratio increases. Namely, the modulus is reduced by approximately 10∼15% when oyster shells are blended up to 20% replacing the fine aggregate. The drying shrinkage strain increases as the blending ratio increases. In addition, the existing model code of drying shrinkage does not coincide with the test results of this study. An adequate prediction equation needs to be developed. The utilization of oyster shells as the fine aggregate in concrete has an insignificant effect on freezing and thawing resistance, carbonation and sulfuric acid attack of concrete recycling. However, water permeability is considerably improved.

  • PDF

Development of Sulfated Oyster Shell-Based Solidifying Agent for Flowable Backfill Material (황산처리 굴패각을 이용한 유동성 뒷채움용 고화재 개발)

  • Wang, Xue;Kim, Sung Bae;Kim, Chang-Joon
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.315-322
    • /
    • 2018
  • Industrial use of waste oyster shells is limited because of requiring excessive energy for converting natural oyster shells in the form of calcium carbonate ($CaCO_3$) into calcium oxide (CaO) for this purpose. This study aimed to develop energy-saving process for producing solidifying agent using waste oyster shells for backfill materials. It was suggested that oyster shells were converted to calcium sulfates which were mixed with sodium hydroxide solution and red clay, forming solid specimen. The optimal concentrations of sulfuric acid for sulfation of oyster shell and sodium hydroxide to generate calcium hydroxide ($Ca(OH)_2$), were determined. Unconfined compressive strength of solid specimen increased with increasing the content of solidifying agent while it increased also with increasing ratio of natural oyster shells to coal ash. The result clearly demonstrates that solidifying agent consisting of sulfuric acid-treated oyster shell, coal ash, and sodium hydroxide solution, can be effectively utilized for preparing backfill materials using natural oyster shell and coal ash. Sulfuric acid-treated oyster shell-based solidifying agent has not been previously developed and will contribute to broaden industrial application of waste oyster shells.