• Title/Summary/Keyword: waste material

Search Result 1,694, Processing Time 0.028 seconds

Development of Separation System with Rotating Rakes for Recovery of Film-based Plastics (기계식(機械式) 회전(回轉)레이크를 이용(利用)한 생활계(生活界) 폐기물(廢棄物) 필름류(類) 선별장치(選別裝置) 개발(開發)에 관(關)한 연구(硏究))

  • Lee, Byung-Sun;Na, Kyung-Duk;Han, Sang-Kuk;Choi, Woo-Zin;Park, Eun-Kyu
    • Resources Recycling
    • /
    • v.19 no.3
    • /
    • pp.24-32
    • /
    • 2010
  • In the present work, a new separation system with rotating rakes has been developed to separate the film-based plastics from the recyclable materials, and environment assessment is also carried out during operation of the device. Capacity of the device was about 5.3 ton/hr at a rakes rotation speed of 26.0 rpm (the number of rakes in the 1st, 2nd and 3rd trials were 39, 52 and 48, respectively) and a belt conveyor speed of 38.5m/min, which satisfied the initial design capacity (5.0 ton/hr). Recovery ratio and purity of the plastic films were 92.6% and 96.5%, respectively at a rotation speed of 28 rpm. The levels of noise, vibration and particulate emission were below material standard regulatory limits. Plastic refused fuel (RPF) was also prepared with the recovered films. The calorific value and chlorine content of the prepared RPF were 9,740 kcal/kg and 0.18%, respectively which satisfy the first grade quality specification of the Korean RPF standard. As a result of this work, recovery of energy resources from the municipal solid waste is possible by adopting the developed separation device.

Assessment of the Hydraulic Conductivity of the Furnace Slag Coated with the Mixture of Bentonite-sepiolite-guargum under Sea Water Condition (벤토나이트-해포석-구아검 혼합물질이 코팅된 제강슬래그의 해수에 대한 투수성 평가)

  • Cheong, Eui-Seok;Rhee, Sung-Su;Woo, Hee-Soo;Park, Jun-Boum
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.4
    • /
    • pp.1-9
    • /
    • 2011
  • Bentonite has been generally used as vertical cutoff barrier material and reported to have several problems regarding its low workability, drying shrinkage cracking by particle cohesion, and ineffective waterproof ability under sea water condition. In this study, the particle sealant, the furnace slag coated by the mixture of bentonite, sepiolite and guargum, was developed to compensate these weak points and the hydraulic conductivity of the particle sealant was evaluated. Drying shrinkage cracking and swelling index was estimated to find the optimal mixing ratio of bentonite, sepiolite and guargum. The hydraulic conductivity of the particle sealants having different amount of sealant (bentonite-sepioliteguargum mixture) coating the furnace slag was estimated using the rigid wall permeameter and flexible wall permeameter. The results showed that drying shrinkage cracking was not found in the bentonite-sepiolite mixture with 20% sepiolite contents and the results from free swelling tests for the sealant having 1 : 0.025, 1 : 0.05 and 1 : 0.075 of weight ratios of bentonite-sepiolite mixture and guargum under simulated sea water condition were higher than those for the bentonitesepiolite mixture without guargum under tap water condition. These three sealants were coated on the furnace slag with 50% and 60% of sealant in the particle sealant and the hydraulic conductivity was estimated. In the cases of the particle sealants having 20% sepiolite in the bentonite-sepiolite mixture and 1 : 0.075 weight ratio of the bentonite-sepiolite mixture and guargum, the hydraulic conductivity from the rigid wall permeameter was below $1.0{\times}10^{-7}$ cm/sec under simulated sea water condition. The hydraulic conductivity of the particle sealant having $1.0{\times}10^{-6}$~$1.0{\times}10^{-7}$ cm/sec by the rigid wall permeameter was estimated using the flexible wall permeameter and found to be below $1.0{\times}10^{-7}$ cm/sec.

The Properties of Natural Hydroxyapatite Isolated from Tuna Bone (참치뼈로 부터 추출한 천연 Hydroxyapatite의 특성)

  • LEE Chang-kook;CHOI Jin-Sam;JEON You-Jin;BYUN Hee-Guk;KIM Se-Kwon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.4
    • /
    • pp.652-659
    • /
    • 1997
  • For the effective utilization of the fish bone waste from seafood industry, the physical properties of the isolated hydroxyapatite from tuna bon have been investigated. On X-ray measurements, the chemical formula and phase of the bone calcined by various temperature were detected as $Ca_{10}\;(PO_4)_6\;(OH)_2$, and hydroxyapatite, respectively. It was shown that the chemical properties of apatite separated from tuna bone were controlled by Ca/P ratio. The mean agglomerate particle diameter was changed as a function of temperature. However, the particle shape has a geometrically non-regular types. These trends are consistent with SEM images. The composition of the glass-ceramic batch by calcined tuna bone was not perfectly agreed with the suggested data, but the partially substituted composition possibly shows the application of it as a bioceramic material.

  • PDF

Stemming Effect of the Crushed Granite Sand as Fine Aggregate at the Mortar Blasting Test (화강암 부순모래의 발파전색효과 연구)

  • Kim, Hak-Sung;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.320-327
    • /
    • 2011
  • In this study, for stemming effect in blast of the mortar block body, the crushed granite sand as fine aggregate, which is waste rock obtained at the ○○ limestone mine, was investigated to compare with stemming materials such as sea sand, river sand, clayed soil and water can be acquired easily at the field. The mortar block body was manufactured with the dimensions of 50 cm width, 50 cm length and 70 cm height. The direct shear and sieve separator test were performed, and the properties of friction resistance were analyzed by the extrusion test for five stemming materials. Axial strain of steel bar and ejection velocity of stemming materials due to the explosive shock pressure in blasthole with the stemming length of 10 cm and 20 cm in the mortar blast test were measured by the dynamic data acquisition system. Among stemming materials, axial strain showed the largest value at the crushed granite sand as fine aggregate, and the ejection velocity was the smallest value at the stemming of water. The results has shown correlate with harden unit weight in blasthole, particle size distribution, shear resistance, and extrusion strength of stemming materials. The ejection velocity of stemming material at the mouth of blasthole and the axial strain of steel bar in the inside of blasthole tend to be inversely proportional to each other, represent exponentially.

Thirteen-year Experience of Permanent Epicardial Pacing in Children (소아연령군에서의 영구 심외막 심박 조율 13년 경험)

  • 한국남;임홍국;김웅한;김용진;노준량;배은정;노정일;윤용수;안규리
    • Journal of Chest Surgery
    • /
    • v.37 no.6
    • /
    • pp.499-503
    • /
    • 2004
  • Background: We investigated the longevity, thresholds of epicardial pacemaker and causes of reoperation in the pediatric patients who underwent epicardial pacemaker implantation performed during the last 13 years Material and Method: 121 operations were performed in 83 patients from January 1989 to July 2002. We analyzed the stimulation threshold, resistance, R-wave and P-wave, and sensitivity of pacemaker lead at initial implantation. Longevity and causes of reoperations were investigated. Result At implantation, epicardial ventricular mean stimula-tion threshold was 1.2$\pm$0.1 (0.1∼5) mV, mean resistance was 519.1$\pm$18.1 (319∼778) Ohm, and mean R-wave sensitivity was 8.9$\pm$0.7 (4∼20) mV, and mean P wave sensivity was 2.5$\pm$0.7 (0.4∼12) mV. The mean longe-vity of pacemaker generator was 64.7$\pm$3.7 (2∼196) months. The reoperation free rate was 94.6% for 1 year, 93.6% for 2 years, 80.8% for 5years, 63.7% for 7 years, and 45.5% for 10 years. The causes of reoperation were battery waste in 26 cases and lead malfunction in 9 cases. There was no postoperative death related to pacemaker malfunction. Conclusion: in the childrens, average longevity of epicardial pacemaker was within accep-table range. 19.1% of the patients required pacemaker related reoperation. However, recent developments, including steroid eluting lead, 6.7% of the patients required pacemaker related reoperation, look promising in expansion of pacemaker life span.

Analysis of Physical and Chemical Properties of CFBC Fly Ash in Vietnam for Solidification (고화재 활용을 위한 베트남 CFBC 플라이애시의 물리적·화학적 특성 분석)

  • Min, Kyongnam;Lee, Jaewon;Lee, Dongwon;Kim, Jinhee;Jung, Chanmuk
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.245-253
    • /
    • 2017
  • Vietnam CFBC fly ash has high CaO content and can be used as a solidification agent for soft ground improvement. However, most fly ash is treated as landfill or waste. In order to utilize fly ash as a solidification agent for soil improvement, the characteristics of fly ash must be accurately determined. In this study, laboratory tests were conducted on fly ash from four CFBC power plants to evaluate the utility of Vietnam fly ash as a solidification agent. As a result of analyzing the physical properties, it was analyzed that all four samples were suitable as material for solidification agent and have suitable particle size for the improvement of soft ground. As a result of analysis of chemical characteristics, it was analyzed that the fly ash of one place could be used as a solidification agent because of the high content of free-CaO. The remaining three fly ash was not suitable for use as a solidification agent due to low Free-CaO content. However, it has a chemical composition similar to that of general fly ash in Korea, so it can be recycled in various ways.

Strength toss of F-Fiber Obtained from Recycling FRP Ship in a Basic Solution (폐 FRP 선박에서 분리하여 얻은 F섬유의 염기성 용액에서의 강도저하)

  • Lee, Seung-Hee;Kim, Yong-Seop;Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.1
    • /
    • pp.42-45
    • /
    • 2008
  • It has been reported that FRP (fiber reinforced plastic) can be recycled by separating into layers instead of crushing into powder. F-fiber obtained from roving layer separated from FRP, has bigger tensile strength than the bundle of glass fibers of which FRP was made (more than 90%). SEM image of F-fiber shows the presence of some resin. Under the proposition of usage of F-fiber in the concrete material, tensile strength is examined after soaking in a basic solution (NaOH+KOH). The reaction mechanism of strength loss may be considered as an attack of hydroxide ion ($OH^-$) on a chemical bond of Si-O-Si of glass fiber. The simulation graph of the strength loss data implies certain reaction mechanism. While in the early stage kinetically controlled reaction results in a fast drop of tensile strength, after 30 days dispersion rate of hydroxide ion plays a major role in strength loss. This result is similar to the one for the AR glass. An extrapolation of the graph would make an assumption about the lift time of F-fiber possible.

  • PDF

Characterization of Leaching Behaviour of Recycled Concrete for Environmental Assessment (용출특성규명을 통한 재생골재 환경성 평가)

  • Kang, S.H.;Lee, S.H.;Kwak, K.S.;Lee, J.Y.;Chung, M.K.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.293-301
    • /
    • 2005
  • We conducted several different leaching experiments for assessing the potential environmental risk when utilizing recycled concrete for stabilizing bridge pier. The methods include continuous batch leaching test (DIN 38414-S4), availability test (NEN 7341), pH-stat test (CEN/TC 292/WG6) and tank diffusion test (NEN 7345). The concentration ranges vary depending on the testing method. Nearly all the trace elements were low, some elements recording under detection limit. The maximum concentrations for trace elements leached throughout the whole tests are (as mg/L); Cd (0.029), Cu (0.437), Pb (0.14), Ni, Zn (0.95), Hg (0.005). Although the testing methods we used in this study are much more rigorous than other commonly adapted method including TCLP and domestic testing method for solid waste, the trace elemental concentrations are under the criteria for hazardous material set by the TCLP and domestic method. The result seems to suggest that applying the recycled concrete on stream water will be accepatable practice as for as trace elements are concerned. However, the influence of inorganics such as Ca, Mg, Ni and $SO_4^{2-}$ on aquatic ecology should be further examined.

Assessment of the Sorption Characteristics of Cadmium onto Steel-making Slag in Simulated Sea Water Using Batch Experiment (모사해수 조건에서 회분식 실험을 이용한 제강슬래그의 카드뮴 흡착 특성 평가)

  • Kim, Eun-Hyup;Rhee, Sung-Su;Lee, Gwang-Hun;Kim, Yong-Woo;Park, Jun-Boum;Oh, Myoung-Hak
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.4
    • /
    • pp.43-50
    • /
    • 2011
  • Steel-making slag was investigated as reactive material for removal of cadmium in coastal area. Batch experiments of the sorption isotherm experiment and kinetic sorption experiment were performed. Result of sorption isotherm was more adequately described by Langmuir model than Freundlich model and theoretical maximum capacity (${\beta}$) of cadmium onto steel-making slag was found. Results of kinetic sorption experiments were evaluated by pseudo second order model to investigate sorption characteristics of cadmium onto steel-making slag. Results showed that the equilibrium sorption amount of cadmium (q$q_e$) increased and the rate constant ($k_2$) and initial sorption rate (h) decreased as the initial cadmium concentration increased. The $q_e$ with simulated sea water was similar to that with deionized water and $k_2$ and h with simulated sea water was lower than those with deionized water. Results of kinetic experiments could be used to predict the result from sorption isotherm, since equilibrium sorption amounts calculated by pseudo second order model generally agreed with those measured from sorption isotherm. The reaction time for the target removal rate could be calculated by the pseudo second order model using kinetic sorption tests results.

The Experimental Study on The Compressive Strength of Concrete Using High Quality Recycled Fine Aggregate Produced by Sulphuric Water and Low Speed Wet Abrasional (황산수와 저속습식마쇄기로 생산된 고품질 순환 잔골재의 콘크리트 압축강도에 관한 실험적 연구)

  • Choi, Duck-Jin;Lee, Dae-Guen;Kim, Ha-Suk;Kawk, Eun-Gu;Kang, Chul;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.385-388
    • /
    • 2008
  • Recycled fine aggregate has low quality because it contains large amount of old mortar. So, its usage is limited to a lower value-add, such as the roadbed material etc. Also, alkaline water occurred from treatment process of the waste concrete is becoming the cause of environmental problem. Accordingly, this study is to develop on the high quality recycled fine aggregate produced by low speed wet abraser using sulphuric. We investigated the properties of compressive strength of the mortar which was manufactured using recycled fine aggregate containing calcined gypsum produced by earlier mentioned process. Test results indicate that concrete using recycled fine aggregate containing calcined gypsum is higher compressive strength than concrete using other sands.

  • PDF