• Title/Summary/Keyword: waste glass powder

Search Result 60, Processing Time 0.028 seconds

Assessment of compressive strength of cement mortar with glass powder from the early strength

  • Wang, Chien-Chih;Ho, Chun-Ling;Wang, Her-Yung;Tang, Chi
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.151-158
    • /
    • 2019
  • The sustainable development principle of replacing natural resources with renewable material is an important research topic. In this study, waste LCD (liquid crystal display) glass powder was used to replace cement (0%, 10%, 20% and 30%) through a volumetric method using three water-binder ratios (0.47, 0.59, and 0.71) to make cement mortar. The compressive strength was tested at the ages of 7, 28, 56 and 91 days. The test results show that the compressive strength increases with age but decreases as the water-binder ratio increases. The compressive strength slightly decreases with an increase in the replacement of LCD glass powder at a curing age of 7 days. However, at a curing age of 91 days, the compressive strength is slightly greater than that for the control group (glass powder is 0%). When the water-binder ratios are 0.47, 0.59 and 0.71, the compressive strength of the various replacements increases by 1.38-1.61 times, 1.56-1.80 times and 1.45-2.20 times, respectively, during the aging process from day 7 to day 91. Furthermore, a prediction model of the compressive strength of a cement mortar with waste LCD glass powder was deduced in this study. According to the comparison between the prediction analysis values and test results, the MAPE (mean absolute percentage error) values of the compressive strength are between 2.79% and 5.29%, and less than 10%. Thus, the analytical model established in this study has a good forecasting accuracy. Therefore, the proposed model can be used as a reliable tool for assessing the design strength of cement mortar from early age test results.

Durability Performance Evaluations on Resistance to Chloride Attack for Concrete Using LCD Waste Glass Powder (LCD 폐유리 미분말을 사용한 콘크리트의 염해내구성 평가)

  • Kim, Seong-Kyum;Lee, Kwang-Woon;Song, Jae-Ho;Jang, Il-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.289-296
    • /
    • 2018
  • In this study, we evaluated the feasibility and performance of LCD waste glass as a replacement for cement by using LCD waste glass powder which is generated from manufacturing process due to development of LCD industry. Experiments were carried out by replacing 10% and 20% cement of LCD waste glass with particle size of $12{\mu}m$ of LCD waste glass with OPC and particle size of $5{\mu}m$, respectively. Through experiments, basic properties, mechanical properties and durability of concrete were evaluated. Experimental results show that the compressive strength is high at 10% replacement ratio compared to 20%. The lower the particle size, the higher the strength. The durability test evaluated the chloride penetration performance through the chloride ion diffusion coefficient. The higher the substitution rate and the smaller the particle size, the lower the chloride ion diffusion coefficient and the better the OPC than the all substitution rate. As a result, LCD waste glass concrete with low granularity and proper replacement ratio is considered to be advantageous for durability under salt environment.

An Experimental Study on High Strength Concrete Using the LCD Waste Glass Powder (LCD 폐유리 미분말을 사용한 고강도 콘크리트에 관한 실험적 연구)

  • Kim, Byung-Chul;Cha, Tae-Gweon;Jang, Pan-Ki;Kim, Chan-Woo;Jang, Il-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.335-341
    • /
    • 2015
  • Various display devices has been increasing also using waste LCD glass in accordance with the used developed, because circumstances that are most landfill or incineration, are needed research on recycling measure of the using waste LCD glass. Therefore, in this study, to try to assess the basic mechanical properties of concrete mixed with using waste LCD glass micropowder through the room mixed test. According to the study results, the more replacement rate increases, the characteristics of the concrete showed a tendency to decrease slightly. However, according to the small value, it is expected to improve the advanced experimental values by refining the grain size of the materials used to be processed into spheres.

Microstructural properties of mortar as a surface roughness of waste glass bead (폐유리 경량골재의 표면 거칠기에 따른 모르타르의 미세구조적 특성 )

  • Pyeon, Su-Jeong;Kim, Gyu-Yong;Choi, Byung-Cheol;Kim, Moon-kyu;Ji, Sung-Jun;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.139-140
    • /
    • 2023
  • This study aims to determine the microstructural characteristics of waste glass beads, a lightweight aggregate manufactured from waste glass powder, when incorporated into mortar in order to examine its usability depending on the particle shape.

  • PDF

Manufacturing of Extinguishing Powder of Expanded Glass from Recycling Automotive Glass Powder (자동차 폐유리 분말을 이용한 팽창유리 소화약제의 제조)

  • Duk-Woo, Jeon;Jung-Ho, Park;Yong-Kwon, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.547-552
    • /
    • 2022
  • In this study, we secured a technology for manufacturing expanded glass of uniform quality by using general tempered glass, that is, window glass, among automotive glass that is scrapped, and verified whether the manufactured expanded glass can be used for lithium battery fire suppression. The process of manufacturing expanded glass using waste glass is generally divided into Crushing → Milling → Granulation → Expansion → Cooling. With several trials a nd errors. It is obtained a yield of 0.5 ø mm to 2 ø mm spherical particles of 80 % or more. By comparing the surface analysis and physical properties, a more suitable sample was selected as a fire extinguishing agent for lithium batteries, and it was confirmed that the result of the adaptability test for lithium battery fire was satisfactory.

Effects of glass powder on the characteristics of concrete subjected to high temperatures

  • Belouadah, Messaouda;Rahmouni, Zine El Abidine;Tebbal, Nadia
    • Advances in concrete construction
    • /
    • v.6 no.3
    • /
    • pp.311-322
    • /
    • 2018
  • This paper presents an experimental investigation on the performance of concrete with and without glass powder (GP) subjected to elevated temperatures. Mechanical and physicochemical properties of concretes were studied at both ambient and high temperatures. One of the major environmental concerns is disposal or recycling of the waste materials. However, a high volume of the industrial production has generated a considerable amount of waste materials which have a number of adverse impacts on the environment. Further, use of glass or by-products in concrete production has advantages for improving some or all of the concrete properties. The economic incentives and environmental benefits in terms of reduced carbon footprint are also the reason for using wastes in concrete. The occurrence of spalling, compressive strength, mass loss, chemical composition, crystalline phase, and thermal analysis of CPG before and after exposure to various temperatures (20, 200, 400, and $600^{\circ}C$) were comprehensively investigated. The results indicated that, the critical temperature range of CPG was between $400^{\circ}C$ and $600^{\circ}C$.

Strength & Microstructure of Class-C fly Ash Activated in Waste Glass Based Alkaline Solution

  • Sasui, Sasui;Kim, Gyu Yong;Pyeon, Su Jeong;Suh, Dong Kyun;Lee, Yae Chan;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.136-137
    • /
    • 2021
  • The soda lime waste glass powder was dissolved in NaOH-4M solution to synthesize an alkaline activator, which was used to activate Class-C fly ash (FA). Compressive and flexural strength tests were conducted to determine the mechanical properties. Archimedes' principle was applied to measure the porosity of samples, (SEM-EDX) and XRD was used to study the microstructure and phase changes of samples. Through Inductive Coupled Plazma technique, the solution was found to increase the concentration of Si as the amount of dissolved glass powder was increased. Owing to the increased concentration of Si in an alkaline solution, the reactivity of FA was accelerated resulting in an increased strength and reduced porosity. Additionally, the dissolution of FA was improved as well as the formation of amorphous phases in the matrix was also enhances with the concentration of increased Si in an alkaline solution.

  • PDF

The Strength Characteristics of Cement ZERO Mortar Mixing Waste Glass Powder and Fly Ash as Binder (플라이애시와 폐유리 미분말을 혼합한 시멘트 ZERO 모르타르의 강도특성)

  • Kang, Hyun-Jin;Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa;Park, Jung-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.649-652
    • /
    • 2008
  • Glass is often recycled. In order to recycle, glass is crushed and ground. During this process, glass powder is generated. Most of this scrap glass powder is disposed in landfills. The glass powder, consisting of 73% SiO$_2$ and 16% Al$_2$O$_3$, is richer in components necessary for polymerization than fly ash. In this study, the fluidity and compressive strength of cement zero mortar were investigated, where cement zero mortar was prepared by mixing 5$\sim$15% of glass powder with 100% fly ash mortar. Result of flow test concluded that workability was not affected by adding the powder. After aging for 28 days, the compressive strength increased by approximately 6% with 5% addition of scrap glass powder. With 10% addition, the strength remained the same. In case of 15% addition, the compressive strength decreased by approximately 6%. To summarize the results, 5$\sim$10% addition of scrap glass powder is considered to be most appropriate.

  • PDF

Physical Properties of Light Weight Foamed Glass Using Waste Glass Powder and Fly Ash (폐유리분말과 플라이애시를 사용한 경량 발포소재의 물리적 특성)

  • Song, Hun;Shin, Hyeon-Uk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.328-334
    • /
    • 2015
  • Building insulation materials use for the purpose of energy saving. Insulation materials can be classified inorganic and organic insulation materials. Inorganic insulation is used for fire resistive performance parts and organic insulation is used for thermal performance parts. Meanwhile, organic insulation is due to toxic gas emission in fire. Inorganic insulation is too heavy and low thermal performance than organic materials. This study is focused on evaluation of the physical properties of inorganic foam material using industrial by-products such as waste glass powder and fly ash. From the test result, inorganic foam materials for the applicability of fire-resistance and insulation light-weight materials.

Sintering Properties of Renewed ${Al_2}{O_3}$Ceramics with Particle Size and Addition Amount of Recycling Powder (재활용원료의 첨가량과 입경에 따른 재생 ${Al_2}{O_3}$ 세라믹스의 소결 특성)

  • 신대용;한상목;김경남
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1123-1131
    • /
    • 2001
  • The sintering behaviors of the renewed $Al_2$O$_3$ceramics were investigated as functions of the addition amount and particle size of recycling $Al_2$O$_3$powder, such as crushed powder of structural $Al_2$O$_3$ceramics and waste $Al_2$O$_3$adsorbent, were investigated. Pure $Al_2$O$_3$sample was fabricated by sintered at 1,$650^{\circ}C$ for 5h and it was crushed into powder (-40${\mu}{\textrm}{m}$and +40${\mu}{\textrm}{m}$ in particle size) by thermal shock treatment and crushing. Then, 10~50wt% of crushed $Al_2$O$_3$powder and waste $Al_2$O$_3$adsorbent were mixed with pure $Al_2$O$_3$powder and were subjected to re-sintering to renewed $Al_2$O$_3$sample. The density and the 3-point bending strength increased with increasing the sintering temperature without regard to the addition amount and particle size of recycling $Al_2$O$_3$powder, and that of the samples at the same sintering temperature decreased with increasing the addition amount and particle size of recycling $Al_2$O$_3$powder. Samples over 200 Mpa of 3-point bending strength were obtained by mixing ~30wt% of crushed $Al_2$O$_3$powder(-40${\mu}{\textrm}{m}$), ~20wt% of crushed $Al_2$O$_3$powder (+40${\mu}{\textrm}{m}$) and 10wt% of waste $Al_2$O$_3$adsorbent. 5~20wt% of waste glass powder containing renewed $Al_2$O$_3$samples for densification were fabricated by sintered at 1200~1$650^{\circ}C$ for 5h. The temperature of maximum density and 3-point bending strength decreased with increasing the addition amount of waste glass powder, however, these samples at above 140$0^{\circ}C$ showed lower density and bending strength than renewed $Al_2$O$_3$samples. The addition of waste glass powder did not improved the densification of renewed $Al_2$O$_3$sample.

  • PDF