• Title/Summary/Keyword: waste glass

Search Result 349, Processing Time 0.026 seconds

Study of thin film transition liquid crystal display (TFT-LCD) optical waste glass applied in early-high-strength controlled low strength materials

  • Wang, Her-Yung;Chen, Jyun-Sheng
    • Computers and Concrete
    • /
    • v.5 no.5
    • /
    • pp.491-501
    • /
    • 2008
  • The present study verifies compressive strength, ultrasonic pulse velocity, electrical resistance,permeable ratio, and shrinkage from waste glass controlled low strength materials (WGCLSM) and early-high-strength WGCSLM specimens, by replacing the sand with waste glass percentages of 0%, 10%,20%, and 30%. This study reveals that increasing amounts of waste LCD glass incorporated into concrete increases WGCLSM fluidity and reduces the setting time, resulting in good working properties. By increasing the glass to sand replacement ratio, the compressive strength decreases to achieve low-strength effects. Furthermore, the electrical resistance also rises as a result of increasing the glass to sand replacement ratio. Early-high-strength WGCSLM aged 28 days has twice the electrical resistance compared to general WGCSLM. Early-high-strength WGCSLM aged 7 days has a higher ultrasonic pulse velocity similar to WGCSLM aged 28 days. The variation of length with age of different compositions is all within the tolerance range of 0.025%. This study demonstrates that the proper composition ratio of waste LCD glass to sand in early-high-strength WGCSLM can be determined by using different amounts of glass-sand. A mechanism for LCD optical waste glass usage can be established to achieve industrial waste minimization, resource recycling, and economic security.

Effect of crushed waste glass as partial replacement of natural fine aggregate on performance of high strength cement concrete

  • Ajmal, Paktiawal;Mehtab, Alam
    • Advances in materials Research
    • /
    • v.11 no.4
    • /
    • pp.251-277
    • /
    • 2022
  • Disposal of industrial waste in cities where municipal authorities permitting higher floor area ratio coupled with increasing living standards, a lot of demolition waste is being generated. Its disposal is a challenge particularly in megacities where no landfills are available. The ever-increasing cost of building construction materials also necessitates consuming demolition wastes in a useful manner to save fresh natural raw materials. In the present work, the crushed waste glass is used in high-strength concrete as a partial replacement of fine aggregate. The control concrete of grade M60 was proportioned following BIS 10262-2009. The crushed waste glass has been used as a partial replacement with varying percentages of 10, 20, 30, and 40% by weight of fine aggregate. Experimental tests were carried on the fresh and hardened state of the concrete. The effect of crushed waste glass on the workability of the concrete has been investigated. Non-destructive tests, acid attack tests, compressive strength, split tensile strength, and X-ray diffraction analysis was carried out for the control concrete and concrete containing crushed waste glass after 7, 28, and 270 days of normal curing. The results show that for the same w/c ratio, the workability of concrete increases with increasing replaced crushed waste glass content. However, the decrease in compressive strength of the concrete after 28 days of normal curing and further after 28 days of acid attacks, up to 30% replacement level of fine aggregate by the crushed waste glass is insignificant.

Physical and Chemical Properties of Waste Glass as Feed Materials for the Production of Foamed Glass (발포유리 원료로서 폐 유리의 물리 화학적 특성)

  • Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.440-448
    • /
    • 2005
  • Physical and chemical properties of waste glass, such as bottle glass, plate glass, and LCD glass were investigated to test the feasibility of starting materials for the production of high quality foamed glass for insulating grade construction material without pre-treatments such as cleaning, and waste removals. For this purpose, chemical analysis, thermal analysis, crystalline analysis, and rheological analysis including viscosity were proceeded and the preparation of foamed glass under the qualitative conditions obtained from these various analysis was also attempted. Overall results of various analysis and investigations for these waste glass showed that waste bottle glass and plate glass have high possivility of use as feed materials for the production of foamed glass.

Mechanical Properties of Steel Fiber Reinforced Concrete Using Waste Glass (폐유리를 혼입한 강섬유보강 콘크리트의 역학적 특성)

  • 박승범;이봉춘
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.1032-1039
    • /
    • 2002
  • Since recycling waste glass as a material for concrete has a great advantage environmentally and economically, the US, Japan and other countries have started recycling waste glass widely and accumulating the technology of manufacturing equipment and its construction. However, there is no practical data on the mechanical property of concrete using waste glass. In this study, the mechanical property of the steel fiber reinforced concrete using waste glass was analyzed in terms of waste glass content(20vo1. %, 40vo1. % as a part of fine aggregate) and steel fiber content(0.5~ 1.5vol.%). The results of this study are as follows : The workability of the concrete including steel fiber and waste glass decreases, as the inclusion rate of waste glass and steel fiber increases. The tensile strength, flexural strength and flexural toughness of the concrete including waste glass increase considerably, as the inclusion rate of steel fiber increases. From the results, the appropriate inclusion rate of steel fiber and waste glass is thought to be 1.0vol. % and 20vo1. %, respectively.

An Experimental Study on Alkali-Silica Reaction of Mortar Containing Waste Glass and By-products (폐유리 및 산업부산물을 혼입한 모르터의 ASR에 관한 실험적 연구)

  • Lee, Bong-Chun;Kwon, Hyuk-Joon;Kim, Jeong-Hwan;Lee, Jun;Park, Seung-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.93-98
    • /
    • 2001
  • Using waste glass in concrete can cause crack and strength loss by the expansion of alkali-silica reaction(ASR). In this study, ASR expansion and properties of strength were analyzed in terms of clear waste glass grading, and by-products(fly ash, blast-furnace slag) and by-products content for reduction ASR expansion due to waste glass. In this accelerated ASTM C 1260 test of waste glass, pessimum grading can be found. Also, when the by-products are used with waste glass, there is an effect on reduction of expansion and strength loss due to ASR between the alkali in the cement paste and the silica in the waste glass.

  • PDF

An Engineering Properties of Concrete Containing Waste Glass (폐유리를 혼입한 콘크리트의 공학적 특성)

  • 라재웅;신재인;오성진;구봉근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.138-143
    • /
    • 2000
  • In this paper, we carried out experiment to use crushed waste glass as a fine aggregate. This study delt with the comparative analysis on the construction works and engineering properties of concrete containing crushed waste glass through physical experiment. The experimental variables are crushed waste glass substitution ratio and W/C(38, 53%). When the W/C was 38%, we could know that concrete containing crushed waste glass was good as general concrete on the construction works and engineering properties but the concrete containing crushed waste glass applied W/C 53% was not good as general concrete on those. Therefore, concrete containing crushed waste glass applied W/C 53% should use admixture on the site.

  • PDF

Evaluation of Carbonation Characteristic for Concrete using OLED Waste Glass Powder (OLED 페유리 미분말을 혼화재로 활용한 콘크리트의 탄산화 특성 평가)

  • Kim, Jae-Don;Jang, Il-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1111-1117
    • /
    • 2020
  • In this study, the carbonation characteristics of concrete according to the mixture of OLED waste glass were evaluated. Replacement capacities of OLED waste glass were 0%, 10%, 20%, and 30% of cement, and they were named OG 0, OG 10, OG 20, and OG 30. As a result of the compressive strength test, OG 0 without replacing OLED waste glass showed high intensity until the 14th. However, the higher the replacement rate of OLED waste glass, the higher the compressive strength of 28 days. In addition, the speed of carbonation was faster with the higher the replacement rate of OLED waste glass, and the accelerated carbonation experiment was about three times faster than the natural carbonation test. In conclusion, the carbonation characteristics of OLED concrete are expected to be positive in terms of atmospheric CO2 absorption.

Effect of Surface Modification of Waste Glass for Fine Aggregate on the Mechanical Properties and Alkali Silica Reaction of Mortar (잔골재용 폐유리의 표면개질이 모르타르의 역학적 특성 및 알칼리 실리카 반응에 미치는 영향)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Sasui, Sasui;Eu, Ha-Min;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.23-24
    • /
    • 2020
  • In this study, effect of surface modification of waste glass for fine aggregates on the mechanical properties and alkali silica reaction of mortar was analyzed. As a result, it was confirmed that the incorporation of waste glass fine aggregate decreases the mechanical properties of the mortar and increase the alkali silica reaction expansion. On the other hand, the surface modification of the waste glass fine aggregate is effective in improving this problem. However, unlike green and brown waste glass, it is judged that an additional experiment to determine the cause is necessary for white waste glass where alkali silica reactive expansion occurs extremely.

  • PDF

Experimental and numerical studies on flexural behavior of high strength concrete beams containing waste glass

  • Haido, James H.;Zainalabdeen, Marwa A.;Tayeh, Bassam A.
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.239-253
    • /
    • 2021
  • The behavior of concrete containing waste glass as a replacement of cement or aggregate was studied previously in the most of researches, but the present investigation focuses on the recycling of waste glass powder as a substitute for silica fume in high strength concrete (HSC). This endeavor deals with the efficiency of using waste glass powder, as an alternative for silica fume, in the flexural capacity of HSC beam. Thirteen members with dimensions of 0.3 m width, 0.15 m depth and 0.9 m span length were utilized in this work. A comparison study was performed considering HSC members and hybrid beams fabricated by HSC and conventional normal concrete (CC). In addition to the experiments on the influence of glass powder on flexural behavior, numerical analysis was implemented using nonlinear finite element approach to simulate the structural performance of the beams. Same constitutive relationships were selected to model the behavior of HSC with waste glass powder or silica fume to show the matching between the modeling outputs for beams made with these powders. The results showed that the loading capacity and ductility index of the HSC beams with waste glass powder demonstrated enhancing ultimate load and ductility compared with those of HSC specimens with silica fume. The study deduced that the recycled waste glass powder is a good alternative to the pozzolanic powder of silica fume.

Effect of waste glass as powder and aggregate on strength and shrinkage of fiber reinforced foam concrete

  • Mayada A. Kareem;Ameer A. Hilal
    • Advances in materials Research
    • /
    • v.12 no.4
    • /
    • pp.331-349
    • /
    • 2023
  • Foam concrete can be considered as environmental friendly material due to its low weight, its minimal cost and a possibility to add waste materials in its production. This paper investigates the possibility of producing foam concrete with waste glass as powder and aggregate. Then, the effect of using waste glass on strength and drying shrinkage of foam concrete was examined. Also, the effect of incorporating polypropylene fibers (12 mm length and proportion of 0.5% of a mix volume) on distribution of waste glass as coarse particles within 1200 kg/m3 foam concrete mixes was evaluated. Waste glass was used as powder (20% of cement weight), as coarse particles (25%, 50% and 100% instead of sand volume) and as fine particles (25% instead of sand volume). From the results, the problem of non-uniform distribution of coarse glass particles was successfully solved by adding polypropylene fibers. It was found that using of waste glass as coarse aggregate led to reduce the strength of foam concrete mixes. However, using it with polypropylene fibers in combination helped in increasing the strength by about 29- 50% for compressive and 55- 71% for splitting tensile and reducing the drying shrinkage by about (31- 40%). In general, not only the fibers role but also the uniformly distributed coarse glass particles helped in improving and enhancing the strength and shrinkage of the investigated foam concrete mixes.