• Title/Summary/Keyword: waste dusts characteristics

Search Result 6, Processing Time 0.022 seconds

CHARACTERIZATION AND STABILIZATION OF WASTE DUSTS FROM SHREDDED AUTOMOBILES INDUSTRIES

  • Takashi, Furuyama;Abel, Bissombolo;Sukeyuki, Mori;Masamichi, Hata;Yoshitsugu, Koga;Tetsuo, Ikejiri
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.699-704
    • /
    • 2001
  • Until recently, disposal to landfill has been the most convenient way to deal with the increasing amount of residues the shredding industries produce. But the shortage of such disposal sites and the risk that liquid drained from these waste dusts may pollute ground water have increased the environmental pressures to find more effective solutions. The present study is an alternative approach that suggests identifying waste dusts characteristics and selecting an appropriate binder for hazardous materials to reduce the amount of contaminants (mainly lead) that were leaking into the soil. Investigations on the characteristics of automobiles waste dusts show that these materials are composed mainly of cottons and sponge like substances, plastics, rubber, glasses and gravel, metals, and electric wires. Besides, the percentage in weight of organic (inflammable) materials is about 70% and the lead contamination, which has not a ionic but a particulate nature, is particularly remarkable in cottons and sponge like materials. Binding additives such as K-20 and sodium carbonate were not effective but the addition of 5 % of cement (in weight of the investigated sample) followed by a 3-minute stirring and a 4-hour storage could drastically reduce the run off of lead below the maximum authorized level. No addition of water was necessary in this method.

  • PDF

COMBUSTION CHARACTERISTICS OF WASTE-PYROLYSIS GASES IN AN INTERNAL COMBUSTION ENGINE

  • Shudo, T.;Nagano, T.;Kobayashi, M.
    • International Journal of Automotive Technology
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Wastes such as shredder dust of disposed vehicles can be decomposed into low calorific flammable gases by Pyrolysis gasification. A stationary electric Power generation using an internal combustion engine fuelled with the waste-pyrolysis gas is an effective way to ease both waste management and energy saving issues. The waste-pyrolysis gas mainly consists of H$_2$, CO, $CO_2$ and $N_2$. The composition and heating value of the gas generated depend on the conversion process and the property of the initial waste. This research analyzed the characteristics of the combustion and the exhaust emissions in a premixed charge spark ignition engine fuelled with several kinds of model gases, which were selected to simulate the pyrolysis-gases of automobile shredder dusts. The influences of the heating value and composition of the fuel were analyzed parametrically. Furthermore, optical analyses of the combustion flame were made to study the influence of the fuel's inert gas on the flame propagation.

A Study on the Concrete Compressive Strength Characteristics mixing Stone Dust Produced by Stone Block Manufacturing (석재(石材) 가공(加工)시 발생한 석분(石粉)이 혼합된 콘크리트의 압축강도(壓縮强度) 특성(特性)에 관한 연구)

  • Chae, Young-Suk;Min, In-Ki;Song, Gab-Young
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.46-53
    • /
    • 2009
  • The stone dusts produced during the manufacturing process of stone blocks are considered as one of industrial waste materials. This stone dusts are managed to either burying under the ground or stacking in the yard, but this disposal process is required an extra costs. The stone dust disposal like burying or stacking also cause environmental pollution such as ground pollution and subterranean water pollution. Thus, this study was conducted to explore the possibility of recycling stone dusts as a concrete mixing material in order to extend recycling methods. Based on the experiment results on various ratios of cement to stone dust content, the compressive strengths of concrete were recorded in the range of $20{\sim}30\;N/mm^2$. The results did not show any decrease in compressive strength due to the stone dust content. It can be concluded that the stone dusts produced by stone block manufacturing can be sufficiently recycled as one of concrete mixing materials in the aspect of compressive strength.

Emission Characteristics of Metal Elements from a MSW Incinerator (도시폐기물 소각시설에서의 금속배출특성 연구)

  • Kim, Ki-Heon;Kim, Sam-Cwan;Song, Geum-Ju;Seo, Yong-Chil
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The behavior and characteristics of heavy metals at different streams in a MSWI(Municipal Solid Waste Incinerator) with a capacity of 100tonnes/day were investigated by measuring the concentration of heavy metals and gases and analyzing their leaching data from ashes. Metal components of Cr, Cu, Cd and Pb were in higher concentrations in the fly ashes collected after the water spray tower than in the bottom ashes. It was due to condensation by a lower temperature with water spray cooling. Metal contents in the bottom ash became higher for finer particles as expected. The mass balance of heavy metals in different stream was estimated from the analyzed data in bottom ash and collected dusts at different locations. For the lower volatility of metals such as Pb, Cu, Cr, 88-97% of them remained in the bottom ash, while Cd and Hg escaped from the combustor with remaining in bottom ash of 18.4 and 0.8%, respectively. In most cases the leaching rate of fly ash showed higher values than that of bottom ash, with the their average acidities of 9.8 and 11.9 respectively.

  • PDF

Development and Basic Performance Characterization of Neutralized Fabric Filter (제전사여과포의 개발 및 기초성능 규명)

  • 박영옥;구철오;임정환;김홍룡;손재익;이영우
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.57-64
    • /
    • 1998
  • A neutralized fabric filter of which major raw materials were polyester and stainless steel fibers was developed and its physiochemical properties and basic filter characteristics were investigated. Four finds of dusts generated in the typical domestic industry were used, which were coke dust from a steel manufacturing process, cement dust from a cement manufacturing process, flu ash from a fluidized-bed combustor, and incinerator ash from a waste plastics incinerator. The physicochemical properties of the neutralized fabric filter were analyzed in terms of changes in tensile strength and initial elastic modulus under $SO_2$ and $NO_2$ atmospheres, mean flow pore pressure, bubble point pore diameter, mean flow pore diameter, and pore size distribution. In addition, the pressure drop, dust penetration, and figure of merit for the fabric filter were investigated in a bench-scale filter testing unit. The pressure drop increased as the filtration velocity and dust loading increased, and its increasing shape depended on the type of dust. The dust penetration rapidly decreased as the dust loading increased irrespective of the type of dust. The figures of merit for the fabric filters increased in the early stage of filtration and then showed rapid decreases followed maintaining a constant level.

  • PDF

Properties of Concrete Panel Made by Light Weight Aggregates (인공경량골재로 제조된 콘크리트 패널의 물성)

  • 엄태호;김유택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.221-228
    • /
    • 2004
  • Basic properties of artificial lightweight aggregate by using waste dusts and strength properties of LWA concrete were studied. Bulk specific gravity and water absorption of artificial lightweight aggregates varied from 1.4 to 1.7 and 13 to 16%, respectively. Crushing ratio of artificial lightweight aggregate was above 10% higher than that of crushed stone or gravel. As a result of TCLP leaching test, the leaching amount of tested heavy metal element was below the leaching standard of hazardous material. Slump, compressive strength and stress-strain properties of LWA concrete made of artificial lightweight aggregate were tested. Concrete samples derived from LWA substitution ratio of 30 vol% and W/C ratio of 45 wt% showed the best properties overall. Thermal insulation and sound insulation characteristics of light weight concrete panel with the optimum concrete proportion were tested. Average overall heat transmission of 3.293W/㎡$^{\circ}C$ was observed. It was higher by about 15% than those of normal concrete made by crushed stone. Sound transmission loss of 50.9 ㏈ in frequency of 500 ㎐ was observed. It was higher by about 13% than standard transmission loss.