• Title/Summary/Keyword: waste ash brick

Search Result 15, Processing Time 0.028 seconds

Manufacturing Characteristics of Environmental-friendly Waste Ash Brick with Industrial By-Products (산업부산물을 이용한 친환경 연소재벽돌의 제조특성)

  • Kim, Han-Seok;Jung, Byung-Gil;Kim, Dae-Yong;Kang, Dong-Hyo;Jang, Seong-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.3
    • /
    • pp.226-234
    • /
    • 2009
  • The main objective of this study was to evaluate the effects on shape and size, compressive strength, water absorption and heavy metals leaching with various weight mixing ratios in waste ash brick products using waste recycling MSWI(Municipal Solid Waste Incinerator) bottom ash, steel slag and waste building material. The manufacturing processes for the waste ash brick consist of screening, mixing, conveyor transmission, compaction.forming, and curing steps of raw materials. The weight mixing ratios of steel slag around bottom ash were adjusted within the ranges of 10% to 30%. The reported results show that the width and thickness of the manufactured waste ash brick could be satisfied with $90{\pm}2mm\;and\;57{\pm}2mm$, respectively which are K.S. standards of products qualities. And in case of length, only 20-Ba50Ss30, 20-Ba60Wb20 and 20-Ba50Wb30 for the mixing ratios could be satisfied with $190{\pm}2mm$ that is K.S. standards of products quality. The compressive strength and water absorption for 20-Ba50Ss30 and 20-Ba70Wb10 were over $8N/mm^2$ and below 15% respectively that are K.S. standards of manufactured waste ash brick. The results of tests for the heavy metals leaching in the all manufactured waste ash bricks are also passed to the wastes management regulations. The cost analysis of 20-Ba50Ss30 is evaluated. The manufacturing cost is evaluated 34.3 won/brick with 8 hours and 20tons of raw material per day. Incinerators with problems in bottom ash disposal can therefore derive significant benefits from the application of waste ash brick production.

A Study on Improving the Strength Properties of Adobe Brick with the use of Agriculture Waste Stabilizer

  • Sasui, Sasui;Kim, Gyu-Yong;Lee, Sang Kyu;Son, Min-Jae;Hwang, Eui-Chul;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.25-26
    • /
    • 2019
  • The construction of adobe houses in flood prone areas is a common practice. These houses collapse when hydraulic loads from flood exerts on the houses. The failure occurs because the adobe brick lacks strength. In order to improve strength of adobe brick, the effects of agriculture waste therefore rice straw, rice husk and rice husk ash as a stabilizing agent have been explored in this paper. The compressive strength test and splitting test was conducted on the adobe specimens which were stabilized with 2% rice straws, 2% rice husk and 2% rice husk ash by the dry weight of soil. The results showed the improvement in strength and elasticity of specimens containing rice straws & rice husk. Whereas with the addition of rice husk ash, the adobe loses its strength and showed plastic behavior.

  • PDF

Use of Heavy Oil Fly Ash as a Color Ingredient in Cement Mortar

  • Mofarrah, Abdullah;Husain, Tahir
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.2
    • /
    • pp.111-117
    • /
    • 2013
  • Heavy oil fly ash (HOFA) is a byproduct generated by the burning of heavy fuel oil. Chemical analysis showed that HOFA is mainly composed of unburned carbon with a significant amount of heavy metals. Due to toxicity, management of this waste poses a challenge to the industry personal. The present study investigates the possible use of HOFA as a black pigment or admixture in cement mortar aiming to produce ornamental brick. In order to investigate the change of cement mortar strength when HOFA is added, the standard compressive strength test with 50 mm cubes was performed. The results showed that the addition of 2-5 % of HOFA in cement mortar does not affect its strength. The leaching behavior of trace elements within HOFA and HOFA mixed mortar were investigated through laboratory batch leaching experiments. The results confirmed that HOFA can be utilized as a black pigment in ornamental brick, which is environmentally safe and provides good balance between color and brick properties.

Fundamental Properties of Concrete Block and Brick using Casting foundry Fly Ash (주물공장 플라이애쉬를 혼합한 콘크리트 블록 및 벽돌의 기초적 성질)

  • 김희성;진치섭
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.87-92
    • /
    • 2001
  • Until now, disposal of casting foundry fly ash generally depends on reclamation. This is the great loss from a point of view saving of resources and utilizing industrial wastes. Therefore, a study on the use of fly ash as a substitute material for construction is necessary in order to utilize industrial wastes, to reduce cost of production, to improve quality in producing concrete products, and to protect environment from pollution. In this study, concrete products(hollow concrete block and concrete brick) using casting foundry fly ash as a substitute materials for cement, are produced. And experiments are conducted based on Korean Industrial Standards. Finally, the used methods of casting foundry fly ash as a substitute materials in industry are presented.

The Properties of Permeability and Freeze-Thaw Resistance of Water-Permeable Paving Brick Using Wastes (폐기물을 이용한 투수블록의 투수성 및 동결융해저항 특성)

  • 신대용;한상목;김경남;이현종
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.210-215
    • /
    • 2004
  • Porous ceramics for water-permeable paving brick was prepared by the sintering of mixed materials comprising of sewage sludge ash, waste porcelain fragment, waste glaze and low-grade clay at 1,000$^{\circ}C$ for 2 h, and the physical $.$mechanical properties, the permeability and the freeze-thaw resistance of specimens with preparation parameters were investigated. The physical mechanical properties were increased in specimens while porosity and permeability were decreased with increasing sewage sludge ash content and sintering temperature on the properties of specimens showed the opposite results. The bulk density, porosity, compressive strength and permeability (passed charge) of 30A60F specimens with 30 wt% of sewage sludge ash content, waste porcelain fragment size with 1∼2 mm and sintered at 1,000$^{\circ}C$ for 2 h were 2.17, 46.2%, 221 kgf/$\textrm{cm}^2$ and 3,150 coulombs, respectively. The permeability was increased with increasing waste porcelain fragment size, however compressive strength was decreased. The freeze-thaw resistance of 30A60F specimen with 1∼2 mm of fragment size was superior to that of the other specimens. The 30A60F specimens can be used for the water-permeable paving brick with the high permeability and adequate strength. The heavy metals included in the all specimens showed lower than the standard level.

Characteristics of VOCs Adsorption of Brick Prepared by MSWI Fly Ash (소각재로 제조한 건축외장재의 VOCs 흡착 특성 평가)

  • Ban, Hyo-Jin;Jeong, Jae-A;Lee, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.857-861
    • /
    • 2010
  • Recently photochemical smog has become a serious urban air pollution. And VOC is the major pollutant for it. With the advance of industrialization and urbanization, MSWI fly ash and sewage sludge and melting slag were generated. It is necessary to de-toxificate ashes, because they contain many toxic constituents and probably lead to contaminate the environment. The objective of this research was to prepare multi-functional brick which is able to remove VOCs in ambient air. The bricks were made of MSWI fly ash, sewage sludge and slag. The benzene adsorption experiment by brick was acted to evaluate its adsorptivity. And also photocatalyst material was coated to enhance its adsorptivity and the endurance on the brick. According to the result, the benzene showed 74~96%. The removal efficiency was increased and the breakpoint time was lengthened by coating a brick.

The Study of Preparation of Block Using Wastewater Sludge of Petrochemical Factory (석유화학공장 폐수슬러지를 이용한 벽돌제조 연구)

  • Hu, Kwan;Lu, Juk-Yong;Wang, Seung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.2
    • /
    • pp.66-73
    • /
    • 2003
  • To investigate the availability of solidified wastes as resource, wastewater sludge, waste gypsum and fly ash were mixed and the results with various mixing ratios are as follows. Compressive strength turned out to be increasing as the amount of waste gypsum increases, keeps longer curing inhibition, and higher forming Pressure under the conditions of waste gypsum/sludge ratio 0.31-0.45, and 0.9kg cement as 15% and 1.2kg cement as 20% of total amount. Solidified agent under the fly ash/sludge ratio 0.45, 0.6, compressive strength seemed to be higher than standard one which means solidified wastes with these conditions could be applicable in real life. These results inform that concentrations of the leachate $Cr^{+6}$, Cu, Zn, Cd, Pb solidified matrix, containing low concentration of heavy metal, were cured with/without enough time it still will cause adverse effect on nature environment and application of heavy metal sequester must be needed to reuse industrial wastes from incineration plant solidified matrix. Total cost price, when considering manufacturing capability of the facilities for resourcerizing as 18,000ton was presented 678,664,000 won, as it were, manufacturing cost price was 37,704 won per ton. The results as above has shown that it's possible to use the mixture of waste gypsum/sludge, fly ash/sludge, cement, additions, and solidification matter as substitute of materials like brick, block, interlocking which has proper compressive strength of KS L 5201 and KS F 4004.

  • PDF

Performance of bricks and brick masonry prism made using coal fly ash and coal bottom ash

  • Verma, Surender K.;Ashish, Deepankar K.;Singh, Joginder
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.231-242
    • /
    • 2016
  • The major problem of a coal combustion-based power plant is that it creates large quantity of solid wastes. So, to achieve the gainful use of waste materials and to avoid other environmental problems, this study was undertaken. The quantity of coal ash by-products, particularly coal fly ash and coal bottom ash has been increasing from the coal power plants around the world. The other objective of this study was to explore the possibility of utilization of coal ash in the production of ash bricks. In 15 different mixes, Mix Designation M-1 to M-15, the varying percentages of lime and gypsum were used and sand was replaced with coal bottom ash. Further, it has been noticed that the water absorption and compressive strength of mix M-15 is 13.36% and 7.85 MPa which is better than the conventional bricks. The test results of this investigation show that the prism strength of coal ash masonry prisms was more than that of the conventional bricks.

Solidification/Stabilization of Dyeing Sludge Treated by Fenton Reagent Using Blast Furnace Slag and Fly Ash

  • Lee, Sookoo;Kim, Sebum
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.453-458
    • /
    • 2001
  • This study was performed to reuse the dyeing wastewater sludge treated by Fenton process through the solidification/stabilization technique. To solidify the dyeing sludge the industrial by-products such as blast furnace slag, fly ash and waste sand with cement were used. The laboratory scale and pilot scale test were conducted at room temperature to make construction brick which has high compressive strength and low leaching of heavy metals. The experimental results showed that blast furnace slag and fly ash could be used instead of cement and the products satisfied the regulation of Korean Standards. The blast furnace slag increased the compressive strength and the optimum ratio of slag/dyeing sludge on dry basis was found 0.4. The solidifying agent of SB series could increase rapidly the compressive strength and the optimum ratio of solidifying agent/sludge on dry basis was 0.26 at which the strength was two times compared with non-added condition. The portion of waste and industrial by-products in matrix was over 80%. From the pilot test the optimum pressure in molding was 100kg/$\textrm{cm}^2$ at which the compressive strength was over 100kg/$\textrm{cm}^2$. And the strength increased continuously to 160kg/$\textrm{cm}^2$ until 120 days curing time due to pozzolanic reaction. When SB-20 as a solidifying agent was used, the unconfined compressive strength of dyeing sludge could be obtained 110kg/$\textrm{cm}^2$ which satisfied the regulation of cement brick in Korea Standard(KS).

  • PDF

Preparation of Multi-functional Brick Using MSWI Fly Ash (소각재를 이용한 건축외장재 제조)

  • Ban, Hyo-Jin;Park, Eun-Zoo;Lee, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.114-118
    • /
    • 2009
  • With the advance of industrialization and urbanization, a lot of waste has been discharged and treated by incineration. But fly and bottom ashes are generated in this process. In addition, the treatment method to recycle sewage sludge and melting slag is required to manage these wastes. The objective of this research was to prepare of multi-functional brick which were made from MSWI (Municipal solid wastes incinerator) fly ash, sewage sludge and slag. The bricks were made by mixing raw materials and then drying for 24 hours. Next, they were dried for 24 hours at $160^{\circ}C$ and fired for 2 hours. Calcination temperature was changed to discuss the effect of temperature from $1,080^{\circ}C$ to $1,130^{\circ}C$. Compressive strength of a brick was creased with the increase of temperature. To increase mixing ratio of fly ash and slag reduce the compressive strength the optimal condition was the mixing ratio of fly ash : melting slag : sewage sludge : clay as 10 : 20 : 5 : 65 and $1,150^{\circ}C$ of calcination temperature. Compressive strength was obtained as about 41 MPa at this condition.