• Title/Summary/Keyword: waste ash

Search Result 630, Processing Time 0.023 seconds

Characteristics of Hg, Pb, As, Se Emitted from Medium Size Waste Incinerators (중형폐기물 소각시설의 수은, 납, 비소, 셀렌 배출특성)

  • Lee Han-Kook
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.1 s.88
    • /
    • pp.8-18
    • /
    • 2006
  • The aim of this study is to evaluate the emission characteristics of mercury, lead, arsenic, and selenium from medium size municipal solid waste incinerators(MSWIs) in Korea. The concentrations of mercury, lead, arsenic, and selenium emitted from medium size MSWI stack were $2.67\;{\mu}g/Sm^3,\;0.38\;mg/Sm^3,\;1.33\;{\mu}g/Sm^3,\;0.28\;{\mu}g/Sm^3$, respectively. The concentration levels of mercury, lead, arsenic in flue gas from medium size MSW incinerator stacks selected were nearly detected under the Korea criteria level. Removal efficiencies of mercury, lead, arsenic, and selenium in waste heat boiler(WHE) and cooling tower(CT) were $90.36\%,\;69.76\%,\;43.04\%,\;40.64\%$, respectively. In general, the removal efficiencies of mercury and lead in WHE were higher than those of arsenic and selenium in WHE. Emission gas temperature reduction from waste heat boiler(WHB) and cooling tower(CT) can control mercury and lead of medium size MSWIs. To evaluate the relationship between mercury, lead, arsenic, selenium of fly ash and those of flue gas, it was carried out to correlation analysis of each metal concentration in the fly ash and in the flue gas from medium size MSWIs. From the correlation analysis, the coefficients of mercury, lead, arsenic, and selenium were 0.61, -0.38, 0.87, 0.28, respectively. The results of correlation analysis revealed that it should be highly positive to the correlation coefficients of mercury and arsenic in the fly ash and those of the flue gas emitted from medium size MSWIs. As it were, the concentrations of mercury and arsenic of flue gas from medium size MSWIs are high unless mercury and arsenic in fly ash are properly controlled in dust collection step in medium size MSWIs. It was also concluded that mercury, lead, arsenic, and selenium from MSWIs stacks could be controlled by waste heat boiler(WHE) and dust collecting step in medium size MSWIs.

The pilot study on reclamation of incineration ashes of municipal waste in the demonstrative factory

  • Chang Hui-Lan;Liaw Chin-Tson;Leu Ching-Huoh
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.573-580
    • /
    • 2003
  • In Taiwan there are 21 Municipal Solid Waste Incinerators (MSWI) built to treat 80% of the MSW nationwide. Approximately 2,000 tons of incineration ashes of municipal waste contain reaction ash and fly ash (3:1 by weight)will be produced daily, and this may cause a serious waste problem. According to EPA regulations, reaction ash and fly ash produced after incineration should be properly treated. Landfill capacity barely meets the general demands. More efficient actions should be planned and taken. The study found 'reclamation' should be the optimal solution to this problem. Only limited research and previous successful experiences are available among other countries. An incinerator in Northern Taiwan is chosen for this study to make environmental bricks from the reaction ash and fly ash. From the previous tests, the results of strength test were measured. From the previous test results, the fly ash products have not reached the desired strength; hence, reaction ash is chosen for further pilot study. In the experiment, incineration ashes, cement and gravel are mixed in the ratio of 1:1:1(by weight), to ground concretization aggregate and pelletization aggregate, the concrete products made from the aggregates were of the strength of 108 $kgf/cm^2$ and 142 $kgf/cm^2$ individually. For the purpose of making nonstructural walls which met the State Building Standards. In the study, 50 tons of concrete products was yielded from aggregate and environmental bricks. Further observation and supervision are recommended to ascertain the resource recycling and reclamation. EPA has planned to build three 'Recycling Plants' in northern, middle and southern Taiwan to develop efficient techniques to produce concrete products, sub-base course, soundproofing wall, gravel, artificial fishing reefs, tiles, drainage, bricks and etc. This experiment of the demonstrative plant solves the problem of the incineration ashes and opens another opportunity to reclaim them.

  • PDF

Durability properties of fly ash-based geopolymer mortars with different quarry waste fillers

  • Tammam, Yosra;Uysal, Mucteba;Canpolat, Orhan
    • Computers and Concrete
    • /
    • v.29 no.5
    • /
    • pp.335-346
    • /
    • 2022
  • Geopolymers are an important alternative material supporting recycling, sustainability, and waste management. Durability properties are among the most critical parameters to be investigated; in this study, the durability of manufactured geopolymer samples under the attack of 10% magnesium sulfate and 10% sodium sulfate solution was investigated. 180 cycles of freezing and thawing were also tested. The experimentally obtained results investigate the durability of geopolymer mortar prepared with fly ash (class F) and alkali activator. Three different quarry dust wastes replaced the river sand aggregate: limestone, marble, and basalt powder as fine filler aggregate in three different replacement ratios of 25%, 50%, and 75% to produce ten series of geopolymer composites. The geopolymer samples' visual appearance, weight changes, UPV, and strength properties were studied for up to 12 months at different time intervals of exposure to sulfate solutions to investigate sulfate resistance. In addition, Scanning Electron Microscopy (SEM), EDS, and XRD were used to study the microstructure of the samples. It was beneficial to include quarry waste as a filler aggregate in durability and mechanical properties. The compact matrix was demonstrated by microstructural analysis of the manufactured specimens. The geopolymer mortars immersed in sodium sulfate showed less strength reduction and deterioration than magnesium sulfate, indicating that magnesium sulfate is more aggressive than sodium sulfate. Therefore, it is concluded that using waste dust interrogation with partial replacement of river sand with fly ash-based geopolymers has satisfactory results in terms of durability properties of freeze-thaw and sulfate resistance.

Removal of Chlorine from Fly Ash in Municipal Solid Waste Incineration Ash by Water Washing (수세에 의한 생활폐기물 소각재 중 비산재로부터 염소성분의 제거)

  • 안지환;한기천;김형석
    • Resources Recycling
    • /
    • v.10 no.5
    • /
    • pp.36-43
    • /
    • 2001
  • The chlorine component in fly ash from municipal solid waste incineration ash was removed by water washing for the purpose of recycling fly ash as a raw material of ordinary portland cement. The samples were a different kind of 리y ashes using $Ca(OH)_2$and NaOH as media of wet scrubber for flue gas cleaning. The content of soluble salts of fly ash using $Ca(OH)_2$and NaOH was 32.8%, 50.1% and the content of chlorine component, 22.9% and 26.0% respectively, which was KCl, NaCl, CaC1OH mainly. When each fly ash was washed using water under conditions of a agitation speed of 300 rpm, a liquid to solid ratio of 10, most soluble salts in fly ash were dissolved within 30 minutes and the content of chlorine component in ash was diminished to the content of 4.4%, 2.O% at $20^{\circ}C$ and 1.7%, 0.8% at $50^{\circ}C$ respectively. And the main compound of residual chlorine component in ash after water washing was friedel`s salt ($3CaO.A1_2$$O_3$.$CaCl_2$.$10H2$O). From analysis results of water quality for wastewater by water washing, the components exceeding discharged wastewater standard were only Pb and Cd. But As pH was controlled to 10 with addition of $CO_2$(g) or $Na_2$$_CO3$in water, the concentration of heavy metals such as Pb and Cd was also under discharged wastewater standard.

  • PDF

A Study on Behavior of Heavy Metals during Waste Incineration (폐기물 소각시 중금속 성분의 거동에 관한 연구)

  • 박용이;허철구
    • Journal of Environmental Science International
    • /
    • v.5 no.6
    • /
    • pp.785-799
    • /
    • 1996
  • The incineration tests of mixed industrial wastes using the stoker type incinerator are carried out to investigate the partitioning characteristics of heavy metals during incineration. The results obtained from this study are as follow. The partitioning characteristics of heavy metals throughout this incinerator are found that, at given condition of $700^{\circ}C$, the elements with the relatively high boiling point such as Cr, Cu and Pb are partitioned into a bottom ash, a fry ash captured tv cyclone, and a flue gas stream, 67~88%, 2~19% and 6~16% of initial amount entering the incinerator, respectively, but the Cd and Hg of 75~81% is vaporized into the flue gas. It appears that the partitioning characteristics according to the particle size of ash is different between the bottom ash and the fly ash. For bottom ash, the fraction of partitioning into 75${\mu}{\textrm}{m}$ oversized particles is reatively high. For fly ash, the characteristics of distributions with the particle size can not be clearly shown.

  • PDF

High Temperature Properties in Finishing Mortars of Exterior Insulation Finishing System Using Fly Ash and Waste Glass Powder (플라이애시와 폐유리분말을 사용한 외단열용 마감모르타르의 고온 특성)

  • Song, Hun;Shin, Hyeon Uk
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.64-72
    • /
    • 2019
  • Fly ash has different chemical composition depending on the type and quality of flaming coal. Fly ash is classified according to carbon content and particle size. Waste glass powder is manufactured by crushing glass. Exterior Insulation Finish System (EIFS) is generally applied by using poly-styrene foam which is economical and has excellent thermal insulation performance. However, poly-styrene foam has excellent insulation performance, but it is vulnerable to fire, which is becoming a serious problem. In this study, using a fly ash and waste glass powder to produce a finishing mortar at high temperatures. Also, High temperature strength and flame retardant properties were tested according to the cover thickness. From the test result, finishing mortar prepared using fly ash and waste glass powder is due to the improved heat resistance by alkali-activated bonding. However, since the strength decreases at high temperatures, it is necessary to select an appropriate mixing proportion.

Adsorption of Ammonia on Municipal Solid Waste Incinerator Bottom Ash Under the Landfill Circumstance

  • Yao, Jun;Kong, Qingna;Zhu, Huayue;Zhang, Zhen;Long, Yuyang;Shen, Dongsheng
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.503-508
    • /
    • 2015
  • The adsorption characteristics of ammonia on MSWI bottom ash were investigated. The effect of the variation of the landfill environmental parameters including pH, anions and organic matter on the adsorption process was discussed. Results showed that the adsorption could be well described by pseudo-second-order kinetics and Langmuir model, with a maximum adsorption capacity of 156.2 mg/g. The optimum adsorption of ammonia was observed when the pH was 6.0. High level of ion and organic matter could restrict the adsorption to a low level. The above results suggested that MSWI bottom ash could affect the migration of ammonia in the landfill, which is related to the variation of the landfill circumstance.

Characterization of Toxic Pollutants in Ash and Flue Gas from Gasification Incinerator of Waste Tires (폐타이어 건류 소각에서 발생되는 재와 배기 가스에서의 독성 오염 물질의 정량)

  • Koo, Ja Kong;Seo, Young Hwa;Kim, Seok Wan;Yoo, Dong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.213-220
    • /
    • 1993
  • The problem of disposing of huge quantities of used tires is of growing concern to every country. As an economical solid waste management, a gasification followed by incineration process was applied to scrap tires to recover heat and to reduce waste volume for final landfill disposal. The gasification temperature, combustible and non-combustible gasified products and possibly produced air pollutants were predicted by changing equivalent mole ratios of carbon to oxygen by a chemical equilibrium model. For a risk assessment of ash toxic pollutants including heavy metals and toxic organics were thoroughly analyzed. Gasification bottom ash contained much more toxic organic compounds than fly ash, whereas fly ash contained higher concentration of heavy metals such as Pb and Cd. Pretreatment or secure landfill technology is suggested for a safe management of ash produced from the gasification incinerators.

  • PDF

Preparation and its Characteristics of Fly Ash-based Geopolymeric Mortar using Low Grade Silica Waste (저급규석을 활용한 Fly Ash 지오폴리머 모르타르 제조 및 특성)

  • Son, Se-Gu;Hong, Seung-Yeob;Kim, Young-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.7
    • /
    • pp.395-400
    • /
    • 2008
  • This paper indicates the investigation about the development of ET (Environmental Technology) industrial geopolymeric materials from mixture silica mine waste, coal fly ash and alkali activator solution (sodium silicate) by the geopolymer technique at ambient temperature. The results showed that higher compressive strength of geopolymeric mortar increased with a reduce of L/S ratio and increased along with an increase of coal fly ash content. The compressive strengths of geopolymer mortar on low silica of C Silica Mine and K Silica Mine are 18.7 MPa, 20.4 MPa, respectively. Compressive strength of geopolymeric mortar depends on L/S ratio and coal fly ash content added.. Additionally, scanning electron microscope (SEM) techniques are used to characterize the microstructure of the geopolymeric mortars. SEM observation shows that it is possible to have amorphous aluminosilicate gel within mortar. XRD patterns indicate the fact that geopolymeric mortar is composed of amorphous aluminosilicate phase, calcite and quartz.

Utilization of Fly Ash in Asphaltic Concrete Mixtures

  • Min, Jeong-Ki
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42
    • /
    • pp.85-91
    • /
    • 2000
  • Dwindling supplies and increasing costs of conventional highway materials used in road construction as well as concerns over shrinking landfill spaces prompt researchers to investigate the use of waste products, such as fly ash, as substitute materials in highway construction. The highway industry is capable of utilizing waste materials in large quantities if their effect on pavement performance proves to be technically, economically and environmentally satisfactory. This research examines the effects of fly ash when used as partial replacement of aggregate in asphaltic concrete mixtures. And measuring the effect of fly ash on bulk specific gravity, air void, indirect tensile strength (ITS) under dry and wet conditioning as well as the tensile strength ratio (TSR) of asphaltic concrete mixture. The results indicated that asphaltic concrete mixtures containing 2% and 5% fly ash produced about the same TSR value as control mixture. And all of the mixtures met the minimum ITS and TSR requirements established by the South Carolina Department of Transportation (SC DOT) for Type 1A surface courses. At this point and with this limited study, these asphaltic concrete mixtures is recommended in several applications such as parking lot, secondary roads and driveways.

  • PDF