• Title/Summary/Keyword: washing treatment

Search Result 605, Processing Time 0.028 seconds

Effect of Ozone Treatment for Safety Improvement of Fresh Vegetable Juice (녹즙의 위생화를 위한 오존처리의 효과)

  • Cho, Jae-Min;Kwon, Sang-Chul;Tu, Gi;Jeong, Jae-Hyun;Lee, Kyung-Haeng
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.5
    • /
    • pp.612-617
    • /
    • 2009
  • Fresh vegetable juice is a non-heat treated product and the only step to reduce microbial growth is washing. Therefore, the materials for fresh vegetable juice including Angelica keiskei, Brassica loeracea var. acephala, and Daucus carota L. were treated by ozone after the first washing process and investigated for microbial and chemical changes. The number of the total aerobic bacteria in materials after selection step were $8.2{\times}10^5{\sim}5.0{\times}10^6\;CFU/g$, which was a higher contamination level than the limit of Korea food code ($10^5\;CFU/g$). However, after the 1st washing process and ozone treatment, the total aerobic bacterial number was reduced to $4.7{\times}10^4{\sim}6.7{\times}10^4\;CFU/g$, which showed 2 log microbial reduction. After the 2nd washing step followed by ozone treatment, there was no difference in microbial number. The number of colifroms in the materials of fresh vegetable juice were $8.0{\times}10^3{\sim}3.5{\times}10^3\;CFU/g$ initially but showed $1.5{\times}10^2{\sim}3.0{\times}10^2\;CFU/g$ after the ozone treatment (1 log reduction). On the other hand, there was no changes in the contents of ascorbic acid, flavonoids, polyphenols, minerals (cadmium and lead) during all processes. In addition, no color changes were observed during washing process. Therefore, ozone treatment in the materials of fresh vegetable juice decreased the microbial numbers. Also, chemical characteristics of ozone treated sample were not different when compared with control.

Treatment of Rice-Washing Wastewater by ph Adjustment (ph 조절에 의한 쌀세척 폐수의 처리)

  • 노홍균;김지숙;이문이;조영인
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.4
    • /
    • pp.660-665
    • /
    • 1994
  • Treatment of rice-washing wastewater was considered under various pH levels and chitosan concentrations. Compared with the control test, addition of chitosan at the various concentrations did not noticeably enhanced turbidity reduction at pH 4 and 5 , but greatly enhanced at above pH 6. However, reduction of turbidity in the wastewater, irrespective of chitosan concentrations, was the greatest at pH 4 and became lower by increasing pH. Suspended solids in the wastewater were the most effectively recovered by pH adjustment of the wastewater to 4 followed by centrifugation, with over 99% reduction in turbidity . Different concentrations of suspended solids in the wastewater and various kinds of acids used for p/H adjustment did not affect turbidity reduction. Increasing storage periods of the wastewater resulted in lower reductions in turbidity.

  • PDF

Effect of Alkali-Washing at Different Concentration on the Chemical Compositions of the Steam Treated Bamboo Strands

  • MAULANA, Muhammad Iqbal;MURDA, Rio Ardiansyah;PURUSATAMA, Byantara Darsan;SARI, Rita Kartika;NAWAWI, Deded Sarip;NIKMATIN, Siti;HIDAYAT, Wahyu;LEE, Seung Hwan;FEBRIANTO, Fauzi;KIM, Nam Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.14-22
    • /
    • 2021
  • The objective of this study was to investigate the effect of alkali-washing with different sodium hydroxide concentrations on the chemical compositions of steam-treated Betung bamboo strand. Strands were subjected to steam treatment at 126 ℃ for 1 h under 0.14 MPa pressure and followed by washing with 1-5% sodium hydroxide solution for 30 sec. The alteration of structural and non-structural chemical components content of bamboo strands was evaluated. Steam and washing treatments with various concentrations of sodium hydroxide solution considerably reduced the extractive content of bamboo strands, and the cell wall chemical components of the strand in the small degree. FTIR analysis showed noticeable changes in peaks related to hemicellulose and lignin. The relative crystallinity increased significantly after steam and washing treatment with sodium hydroxide up to 3% concentration. SEM Images showed smooth and clean strands surface after washing with 3% sodium hydroxide.

Study of Conservational Methods for the Old Printing Papers (열화된 인쇄지의 보존처리방안 연구)

  • Lee, Kwi-Bok;Hyeon, Hye-Won;Jung, Sun-Young;Seo, Yung-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • Printing papers published in between 1950's and 1990's were treated with three methods such as distilled water washing, $CaCO_3$ solution washing and methyl cellulose solution coating for improving their conservational properties. Accelerated aging with $80^{\circ}C$ and 80% RH for 14 days was applied to the testing papers. Results showed that distilled water and $CaCO_3$ washing kept increased pH even after accelerated aging, but did not improve folding endurances for 1950's-60's papers. Methyl cellulose treatment did not increased pH of the old papers, but increased folding endurances remarkably for 1950's-60's papers even after accelerated aging. It suggests that methyl cellulose treatment after $CaCO_3$ washing should give improvements both in pH and folding endurance.

Development of Hybrid Remediation Method for Contaminated Soils with Zinc or Arsenic and Diesel (아연 또는 비소와 경유로 오염된 토양의 복합정화공법 개발)

  • Kim, Hye-Young;Park, Jeong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.4
    • /
    • pp.13-20
    • /
    • 2010
  • The purpose of this study was to develope the remediation method of contaminated soils with metals and petroleum. The diesel degrading strain was isolated and identified from the soil contaminated by petroleum at industrial sites. Diesel biodegradation experiment was performed by diesel degrading bacteria in both solution and soil slurry. Contaminated soils by Zn or As and diesel were treated consecutively by steam-vapor extraction, biodegradation, and acid washing. The strain was identified as Pseudomonas aeruginosa, and named as Pseudomonas aeruginosa TPH1. The optimal culture conditions of TPH1 were $20^{\circ}C$ and pH 7.0, 3% of diesel concentration. Biodegradation of diesel was performed using the separated strain in liquid medium, and 63% of diesel was degraded in 72 hours. And 52% of diesel was removed in the tested soils. In the treatment of contaminated soils with diesel and Zn or As, 29% ~ 44% of diesel was reduced by steamvapor extraction, 60% ~ 71% of diesel was removed after biodegradation. 47% of Zn and 96% of As were removed after acid(mixture of sulfuric and oxalic acids) washing. It is recommended that consecutive treatment method of steam-vapor extraction, biodegradation and acid washing is effective for remediation of complex contaminated soils with metals and petroleum.

Application of in-situ CaCO3 forming process on recycled fibers for optical property improvement (고지의 광학적특성 개선을 위한 in-situ 탄산칼슘처리기술의 적용)

  • Park, Dong-Hui;Lee, Min-Woo;Lee, Jong-Kyu;Ahn, Ji-Whan;Seo, Yung-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.8-15
    • /
    • 2012
  • Optical property improvements for ONP (old newspaper) and OMG (old magazine) were attempted by application of in-situ $CaCO_3$ formation process on recycled fiber surfaces. Washing treatment of ONP and OMG resulted in 35~40% yield loss for around 6% brightness improvement. Washing plus bleaching process with $H_2O_2$ and FAS (formamidine sulfinic acid) improved brightness and ERIC values a little more with the same amount of yield loss as washing treatment. In-situ $CaCO_3$ formation method improved those optical properties much better than the washing plus bleaching method without loss of yield, and better than the case of adding high brightness PCC up to the same ash level. It can be said that the in-situ $CaCO_3$ formation method may be used as an effective alternative for upgrading optical properties of recycled fibers.

Research on Continuous After-Treatment Process and System for DTP(Digital Textile Printing) (DTP(Digital Textile Printing)용 후처리 및 연속공정 시스템에 관한 연구)

  • Park, Soon-Young;Jeon, Dong-Won;Park, Yoon-Cheol;Lee, Beom-Soo;Cho, Hang-Sung
    • Journal of Fashion Business
    • /
    • v.15 no.5
    • /
    • pp.43-54
    • /
    • 2011
  • Digital Textile Printing(DTP) is appropriate for quick response system(QRS) and is closely connected with high value added fashion industry. Fashion products of high price are mainly silk and cotton. For high quality DTP products, it is important to optimize the parameters of media, pre and after-treatment, ink, printer, etc. DTP for these two fiber materials is also accompanied certainly with steaming as after-treatment process for coloration. Role of steam is like water in exhaustion dyeing. Steam can diffuse dye or ink in printing paste to fiber. Quality of DTP products depend on after-treatment processes such as steaming, washing, drying. Current production amount of DTP is smaller than one of conventional textile printing. However conventional after-treatment system has been using so far. This is mismatched with DTP in terms of process efficiency, spot work of small lot, quality control. In this study, continuous after-treatment system has been suitably designed for DTP that washing and drying are available after steaming. So, It is possible to improve efficiency of DTP process. Especially, the effects of after-treatment process, such as temperature of heat drum, steaming time on printability, color difference, color fastness were examined. Two types of samples(cotton knit and silk fabrics) were used. The results were obtained as follows : First, there is no a wide difference between the K/S values of cotton and silk treated with continuous after-treatment system and those of sample treated with conventional printing after-treatment method. So it is more effective to use the continuous after-treatment system than conventional printing after-treatment system in case of the daily throughput of 1,000 yards below. Second, after continuous after-treatment for DTP, K/S values were increased and lightness($L^*$) values were decreased. ${\Delta}E$ values were below 2.3. Third, DTP samples treated with continuous after-treatment system were tested for fastness(washing, light, rubbing). Grades of fastness(washing, light, rubbing) were above 3 grade.

Influence of Cotton Pre-Treatment on Dyeing with Rubia cordifolia extracts for Cotton (면의 전처리 방법이 Rubia cordifolia 추출물의 염색성에 미치는 영향)

  • Bum Hoon Lee
    • Textile Coloration and Finishing
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In this study, the influence of pre-treatment(bleaching, mercerization by liquid ammonia and caustic soda) on cotton fabrics were investigated on dyeing Rubia cordifolia extracts. Aluminium Sulfate, Iron(Ⅱ) Sulfate Heptahydrate, Copper(Ⅱ) Sulfate Pentahydrate, Tin(Ⅱ) Sulfate, Manganese(Ⅱ) Chloride Tetrahydrate were used as mordanting agents. K/S value and washing fastnesses of the dyed cotton fabrics pretreated under different conditions were investigated. The K/S values were increased in the order of bleaching, liquid ammonia and mercerization pre-treatment. It was found that the pre-treatment conditions did not significantly affect the color change. The colorfastness to washing of most of all dyed fabrics were over grade 4 regardless of pre-treatment condition.

End Use Tactile Property of the Split-type Nylon/PET Microfiber Fabrics (마찰과 세탁에 의한 극세섬유 직물의 표면과 촉감변화에 관한 연구)

  • 오경화;윤재희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.3_4
    • /
    • pp.539-545
    • /
    • 2004
  • In this study, the effect of washing, bleaching, and abrasion on tactile and the water absorption properties of the split-type Nylon/Polyester (N/P) microfiber pile-knit was investigated under various enduse conditions. We examined the water absorption and surface properties of PET microfiber which will be very useful in the future. We also studied the variations of their performance during usage caused by friction and repeated washing, regard to all kinds of physical, chemical changes which will appear while using those textiles. Progress in further splitting of PET microfiber fabric is observed with increases in the number of washing and bleaching cycles, and treatment temperature. Initial water absorption (%) was increased with progress in splitting, which provided efficient capillary channel. Surface properties were varied with additional splitting by washing and abrasion. Formation of pilling and splitting by abrasion increase surface roughness, diminishing tactile property, and reduced water absorption property. The current results from this study is expected to provide the appropriate washing management guide to consumers, and to inform end-use performance of product to a producer for improving product quality.

Change of Physical Properties of Under Wear by Repeated Washing. (반복 세탁에 따른 내의류의 물성변화에 관한 연구)

  • Song, Kyoung-Hun;Lee, Mun-Soo
    • The Journal of Natural Sciences
    • /
    • v.8 no.1
    • /
    • pp.137-143
    • /
    • 1995
  • The purpose of this study is to investigate the change of shrinkage, tensile strength, elasticity, light-fastness and color-fastness of 100% cotton upper under wear after acidic treatment and repeated washing and drying. Both of warp and welt were shrinked, especially in the early washing stage. Tensile strength was not weakened by 15 times of repeated washing. Hunter whiteness(HW) of white-underwear decreased, but color difference($\Delta$E) and yellow index(YI) increased corresponding to the frequency of washing and sunlight drying. The discoloration of color-underwear was significant in the early stage.

  • PDF