• Title/Summary/Keyword: washing time

Search Result 679, Processing Time 0.028 seconds

Sustainability of Textile Products based on Washing Conditions: Focusing on the washing temperature and washing time (의류제품의 세탁조건과 지속가능성: 세탁온도와 세탁시간을 중심으로)

  • Yun, Changsang;Ryu, Hanna;Park, Sohyun
    • Human Ecology Research
    • /
    • v.56 no.5
    • /
    • pp.417-424
    • /
    • 2018
  • The use stage of a textile product impacts sustainability more significantly than other stages of the product's life cycle due to repeated washing and drying. This study determines efficient washing conditions, with high detergency, to reduce energy consumption from excessive washing and improve the washing process sustainability. Detergency was measured at various washing temperatures ($20^{\circ}C$, $40^{\circ}C$, and $60^{\circ}C$) and time (10 min, 20 min, and 30 min) using standardized soiled fabrics, i.e., 100% cotton, polyester/cotton (65%/35%), and 100% polyester woven fabric soiled with pigment/sebum, carbon black/mineral oil, soot/mineral oil, cocoa, blood, and red wine. Detergency at the washing condition of $20^{\circ}C$ and 30 min was higher than that at $40^{\circ}C$ and 10 min. In addition, detergency at the condition of $40^{\circ}C$ and 30 min was also higher than that at $60^{\circ}C$ and 10 minutes. This may be because a reduced washing effect at low washing temperatures was complemented by increased mechanical action over a long time. Further, washing temperature and time, with the same detergency, differed based on the type of fiber and soil. Also, the influence of a detergent on the detergency depends on the type of soil. The results suggest that energy and detergent have been consumed more than necessary in actual laundry. According to each type of fiber and soil, washing conditions designed to reduce the energy consumption of the washing process while maintaining the same detergency, were determined.

Optimal Washing Time Control Algorithm of the Drum Washing Machine Using an Inertia Estimator (관성 추정기를 이용한 드럼 세탁기의 최적 세탁시간 조절 알고리즘)

  • Hwang, Chun-Hwan;Lee, Jung-Hyo;Kim, Kyung-Min;Kong, Tae-Woong;Lee, Won-Cheol;Won, Chung-Yuen;Kim, Young-Real
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.571-573
    • /
    • 2008
  • Conventional drum washing machine is divided by amount of laundry on 3 step. Because that, this method is arisen in case of washing smaller amount of laundry than each weight during same time. In other words, power is wasted by unnecessary washing time. In this paper, exact quantity of laundry is obtained by using inertia estimator considering features of drum washing machine, unnecessary washing time is decreased by selection proper washing time, thus the algorithm that increase efficiency by reducing power consumption is proposed.

  • PDF

Optimum Washing Conditions of Artificially Soiled Cloths in a Drum-Type Washing Machine (드럼세탁기의 세척성 향상을 위한 인공 오염포의 세탁조건에 따른 세척성)

  • Chung, Hae-Won;Kim, Mi-Kyung;Kim, Hyun-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.11 s.158
    • /
    • pp.1589-1597
    • /
    • 2006
  • Nowadays, Korean consumers prefer drum-type washing machines to pulsator-type washers. Washing is a complex process involving the interaction of numerous physical and chemical influences. The main factors in the washing operations are the washing chemistry of the detergent along with the mechanical input, the wash temperature, and the time provided by the washing machine. Heavy-duty detergents that are used in drum-type washing machines contain different components from those used in vertical-axis washing machines. The bath ratio and the mechanical actions to which laundry is subjected are different between the drum-type and the vertical-axis washing machines. In this study we examined the effects of wash temperature, wash time, detergent concentration, and revolution speed on the removal of soils from artificially soiled cloths in a drum-type washing machine with heavy-duty commercial detergent. We used multiple regression analyses to find the relative importance of the factors and the optimum washing conditions. The results of these experiments showed that the washing temperature was the most important factor in the effective removal of most soils. This was followed by the washing time, the detergent concentration, and finally the revolution speed. In this study it was found that superfluous amounts of detergent did not sufficiently increase the soil removal rate. Koreans who are used to washing with cold water should increase the wash time to launder more efficiently.

A Study on Non-detergent Course of Washing Machine (무세제 세탁코스에 관한 연구)

  • Kang, In-Sook;Jo, Seong-Jin;Kim, Young-Soo
    • Fashion & Textile Research Journal
    • /
    • v.5 no.5
    • /
    • pp.539-544
    • /
    • 2003
  • The purpose of this study is to research source of soil which is available for non-detergent course, and to develop optimum non-detergent course of washing machine for water soluble soil. The water soluble soil such as grape juice, soy bean paste and soy sauce were easily removed from the fabric but the oil soluble soils such as sesame oil and steak sauce were insurfficiently removed in washing solution without detergent. In the absence of detergent, amount of residual soils increased linearly with increasing number of soiling and washing. To search optimum conditions of washing for non-detergent course, the effect of temperature, washing time and washing method on detergency of soil in non-detergent washing solution was examined. The optimum washing temperature and washing time for non-detergent course were about $40^{\circ}C$, and 7 minutes, respectively. And in the non-detergent washing solution, midterm drain-resupply of water during washing process was good for removal of water soluble soil.

Assemblage and Driving Characteristics of a Ultrasonic Fabric Washing Machine (초음파 직물수세기의 구성 및 구동 특성)

  • 이춘길;이광수
    • Textile Coloration and Finishing
    • /
    • v.12 no.3
    • /
    • pp.207-217
    • /
    • 2000
  • A new, high-efficiency ultrasonic fabric washing machine was developed to be an energy-efficient washing machine and to enhance fabric washing quality in washing processes of the dyeing and finishing process in the textile industry. This system is composed of ultrasonic wave generator, air blowing nozzle, torque motor for fabric tension control, and enclosed washing bath, multi-tube type exchanger, noiseless heater, air cylinder, expander roller, mangle upper and lower rollers, bend bar, dancer, shower spray nozzle, and solenoid valve, and so on. These elements are synergised for fabric washing. One of the very important principles is the low tension fabric running system. For an efficient washing effect, a counter flow system is also adopted. The new system also adopts the dancer and torque motor to control fabric tension and prevent fabric creasing. Shower spray nozzle, counter flow and overflow apparatus, and air-blowing apparatus are adopted to enhance the fabric washing effect. In this study, peach yoryu, exter, and moss crepe fabrics were washed by the general and ultrasonic washing systems under different conditions respectively. The washing efficiency was affected by the fabric running speed and characteristics of fabrics. Size content after washing increased with increasing the fabric running speed. The values in the general washing system were higher than those of the ultrasonic washing system. The changes of conductivity in the ultrasonic and the cooling bath were affected by the running time under the ultrasonic generating. The values of conductivity decreased as the experimental time passed.

  • PDF

Studies on the Foam Washing of Wool (양모의 포말세정에 관한 연구)

  • Chung Doo Jin;Minagawa Motio
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.9 no.3
    • /
    • pp.53-61
    • /
    • 1985
  • This paper has been studied on the method of washing without any damage on wool, namely foam washing method. Effect of washing was obtained with experimental equipment manufactured by way of trial. but some deflects were found that the volume of detergent solution and blow ratio changed with time passes by. This difficulties should be improved by farther studies. The solution mixed with sodium oleate ($0.5\%$) and sodium carbonate ($0.3\%$) was found suitable for detergent solution, and under the conditions of washing temperature at $50\~60^{\circ}C$ and washing time for 5 minutes, the washing effect was obtained good. Desoaping treatment with $Na_2CO_3$ solution after washing might be thought to be necessary, and from the scanning electron micrographs (SEM), no damage on wool and wool sureface washed was, observed. From the results of this study foam washing of wool may be expected to be very effective.

  • PDF

A Study on the Surface Activity and Detergency of the Soap Made from the Waste Oil from Food Manufacturing Proces (식품가공폐유를 이용한 비누의 계면활성과 세척성에 관한 연구)

  • 정명섭;유덕환
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.5
    • /
    • pp.661-673
    • /
    • 1994
  • We have gathered a fatty acid to recycle the waste oil of food manufacturing process, and then made a soap from the waste oil by alkali saponification. Effects of the washing elements such as the concentration of the soap, temperature and time were evaluated to find out the optimum washing conditions, and results are as follows. 1. We could find soaps made from the soybean oil (A), corn oil (B), rape seed salad oil (C), cotton seed oil (D) and a soap consisting of the each oil 25% respectively (I) had the lowest surface tension at the concentration of 0.225% -0.25%. Compared with the single fatty-acid soap, the multi-component soap I showed the lower surface tension at the cmc. 2. All the samples of A-I showed the lowest contact angle for the solid material at the concentration of 0.25%. The multi-component soap of I showed higher contact angle than the single.component soaps of A, B, C and D. 3. The soap G, made from the waste oil, show lower surface tension than 5, made from the complex raw fats of the eatable fatty oil acid and H, commercial soap. 4. The washing efficiency depends on the washing time. Especially the 25-minute was found to be the optimum washing time. 5. The highest washing efficiency was found at the 0.25% cont. reagardless of the washing temperature. At 0.15% concentration level the washing efficiency reduces as washing tem- perature increases. At 0.3% concentration level the highest washing efficiency was found between $50^{\circ}$-$60^{\circ}$. 6. The soap made from the waste oil showed the highest washing efficiency in terms of concentration, temperature, and time. 7. The soap made from the waste oil showed the similiar concentration of hydrogen ion to the synthetic detergent. 8. The hand value of the fabric washed by the soap made from the waste oil was a little lower value than those washed by the synthetic detergent.

  • PDF

Improvement of Efficiency in Surface Washing of Granular Filters (여과지 표면역세척 공정의 효율개선)

  • Ahn, Jong-Ho;Kim, Ja-Kyum;Yoon, Jae-Heung;Shin, Ik-Sang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.41-46
    • /
    • 1999
  • Backwashing is an important process for the efficient operation of granular filters, and the efficiency of the surface washing among the backwashing processes can affect the filtrations rate and filter run-time. In this study, the efficiency of surface washing is evaluated using real filters for three cases: with surface washing (with and without drainage of water to the surface of filter bed) and without surface washing. As a result, in the case of adopting both the drainage and surface washing, the filter of which condition is initially worse than those of the other filters shows improvement in head-loss development, filtration velocity, filter run-time, and total filtration volume. On the other hand, the conventional method of surface washing rarely has an effect on the filter washing.

  • PDF

Washing Effects according to the Rinsing Conditions and the Characteristics of Soiled Fabrics (오염포의 특성과 헹구기 조건에 따른 세척 효과)

  • Jo, Won-Joo;Lee, Deug-Hee;Park, Eun-Jin;Lee, Jeong-Sook
    • Fashion & Textile Research Journal
    • /
    • v.13 no.3
    • /
    • pp.425-431
    • /
    • 2011
  • The purpose of this study was to investigate washing effects according to the rinsing conditions and the characteristics of soiled fabrics. In this study rinsing conditions including rinsing cycle, time, temperature, and bath ratio were examined. The foamability of rinsing bath was also examined. The quantity of LAS in the rinsing bath and extracts of test fabrics was analyzed after washing and rinsing, respectively. The results of these experiments were as follows: The washing effects of soiled fabrics were varied from the kinds of soils and rinsing conditions. The removal of soils from fabrics was increased by the first rinsing after washing effectively. The priorities of rinsing conditions were rinsing temperature> rinsing time > rinsing cycles> references. Foamability was result from residual LAS in rinsing bath and fabrics extracts after rinsing. The residual quantity of LAS was references > rinsing cycles> rinsing time> rinsing temperature, which shown rinsing temperature was the most efficient factor of the rinsing performance.

Washing of Pigment Dyed Fabrics (시판 피그먼트 염색직물의 워싱가공에 관한 연구)

  • Lee, Hye-Ja;Yoo, Hye-Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.8
    • /
    • pp.1169-1177
    • /
    • 2006
  • The aim of this study was to investigate the change of the weight loss, tensile strength, flex stiffness, and color-values of the pigment-dyed cotton, polyester/cotton, polyester and nylon fabrics after washing process. Pigment-dyed cotton and polyester/cotton fabrics were treated with the cellulase, of which concentrations were 0, 1, 3 and 5g/l. The time of washing process ranges from 30 to 120 minutes. Pigment-dyed polyester and nylon fabrics were treated without enzyme, of which the washing temperature were 13, 30, $55^{\circ}C$ and the washing time ranges from 30 to 120 minutes. Also, they were tested in terms of the influences of agitation speed(rpm) and additives such as softeners, enzymes, detergents. The weight loss and tensile strength of the pigment-dyed cotton and polyester/cotton fabrics were positively correlated with the concentration of cellulase and washing time. Neither polyester nor nylon fabrics exhibited any change of the weight. All fabrics showed the decline of flex stiffness and decoloration after washing process. Decoloration of cotton and polyester/cotton fabrics was due to both the influence of cellulase and the mechanical rubbing. On the other hand, that of polyester and nylon fabrics was caused by the mechanical rubbing only.