• Title/Summary/Keyword: washing after composting

Search Result 2, Processing Time 0.016 seconds

Comparison of Salinity and Composting Efficiency by Washing before and after Aerobic Composting of Food Wastes (음식물쓰레기의 호기성 퇴비화 전과 후의 세척에 따른 염분도와 퇴비화효율 비교)

  • Park Seok Hwan
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.2 s.83
    • /
    • pp.160-164
    • /
    • 2005
  • This study was performed to evaluate the effects of washing food wastes before aerobic composting on temperature, pH and salinity, and the effects of washing after composting on salinity of sample mixtures. Weight ratios of food wastes to water in washing were 1:0(Control), 1:1(W-1), 1:2(W-2), 1:3(W-3) and 1:0(N-4), respectively. Ratios of food wastes to wood chips in reactor of Control, W-1, W-2, W-3 and N-1 were $5\;kg:0\iota,\;5\;kg:5\iota,\;5\;kg:5\iota,\;5\;kg:5\iota\;and\;5\;kg:5\iota$, respectively. Reactors were operated for 24 days with 1 hour stirring by 1 rpm and 2 hours of forced aeration per day. The increase in the ratio of water to food wastes resulted in the increase of the maximum reaction temperature and the shortening of the high temperature reaction period. The increase in the ratio of water to food wastes also resulted in faster reaching to the lowest pH and then to the steady state of pH 9.0. The final salinities of Control, N-1, W-1, W-2 and W-3 were $1.04\%,\;0.92\%,\;0.78\%,\;0.64\%\;and\;0.53\%$, respectively. The salinities of the N-l samples which were washed by the weight ratios (water:N-l) of 1:1, 2:1 and 3:1 after composting were $0.72\%,\;0.61\%\;and\;0.51\%$, respectively. Therefore, washing food wastes before aerobic composting is more efficient method than that after aerobic composting.

A Study on the Applicability of Soilremediation Technology for Contaminated Sediment in Agro-livestock Reservoir (농축산저수지 오염퇴적토의 토양정화기술에 대한 적용성 연구)

  • Jung, Jaeyun;Chang, Yoonyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.3
    • /
    • pp.157-181
    • /
    • 2020
  • Sediments from rivers, lakes and marine ports serve as end points for pollutants discharged into the water, and at the same time serve as sources of pollutants that are continuously released into the water. Until now, the contaminated sediments have been landfilled or dumped at sea. Landfilling, however, was expensive and dumping at sea was completely banned due to the London Convention. Therefore, this study applied contaminated sedimentation soil of 'Royal Palace Livestock Complex' as soil purification method. Soil remediation methods were applied to pretreatment, composting, soil washing, electrokinetics, and thermal desorption by selecting overseas application cases and domestically applicable application technologies. As a result of surveying the site for pollutant characteristics, Disolved Oxigen (DO), Suspended Solid (SS), Chemical Oxygen Demand (COD), Total Nitrogen (TN), and Total Phosphorus (TP) exceeded the discharged water quality standard, and especially SS, COD, TN, and TP exceeded the standard several tens to several hundred times. Soil showed high concentrations of copper and zinc, which promote the growth of pig feed, and cadmium exceeded 1 standard of Soil Environment Conservation Act. In the pretreatment technology, hydrocyclone was used for particle size separation, and the fine soil was separated by more than 80%. Composting was performed on organic and Total Petroleum Hydrocarbon (TPH) contaminated soils. TPH was treated within the standard of concern, and E. coli was analyzed to be high in organic matter, and the fertilizer specification was satisfied by applying the optimum composting conditions at 70℃, but the organic matter content was lower than the fertilizer specification. As a result of continuous washing test, Cd has 5 levels of residual material in fine soil. Cu and Zn were mostly composed of ion exchange properties (stage 1), carbonates (stage 2), and iron / manganese oxides (stage 3), which facilitate easy separation of contamination. As a result of applying acid dissolution and multi-stage washing step by step, hydrochloric acid, 1.0M, 1: 3, 200rpm, 60min was analyzed as the optimal washing factor. Most of the contaminated sediments were found to satisfy the Soil Environmental Conservation Act's standards. Therefore, as a result of the applicability test of this study, soil with high heavy metal contamination was used as aggregate by applying soil cleaning after pre-treatment. It was possible to verify that it was efficient to use organic and oil-contaminated soil as compost Maturity after exterminating contaminants and E. coli by applying composting.