• Title/Summary/Keyword: warp length

Search Result 52, Processing Time 0.019 seconds

쌍끌이 중층트롤어법의 연구 ( 1 ) - 모형어구의 망구형상에 관하여 - ( A Study on the Pair Midwater Trawling ( 1 ) - Mouth Performance of the Model Net - )

  • 이병기
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.1
    • /
    • pp.29-44
    • /
    • 1995
  • A model experiment on the pair midwater trawl net applicable to 800 PS class Korean pair bottom trawlers was carried out in the special-prepared experimental thank. the tank was prepared as a reverse trapezoid shape in its vertical section by digging out flat soil. The dimension of the tank showed the 9.6 W$\times$43.0 L(m) of the upper fringe and the 4.8 W$\times$38.0 L(m) of the bottom with 3.0m in depth. The depth of water was maintained 2.7m during experiment. The model net was prepared based on the Tauti's similarity law of fishing gear in 1/30 scale considering the dimension of the experimental tank. Mouth performance of the model net during towing were determined by the photographs taken in front of the net mouth with the combinations of towing velocity, warp length and distance between paired boats. The results obtained can be summarized as follows: 1. Vertical opening of the model nets A and B was varied in the range of 0.18~0.88 m and 0.21~0.78 m (which can be converted into 5.4~26.4m and 6.3~23.4 m in the full-scale net) respectively, and was varied predominantly by towing speed. Vertical opening (H which is appendixed m for the model net. f for the full-scale net. A and B for the types of the model net) can be expressed as the function of towing velocity$V_t$as in the model net $V_t$ : m/ sec)$H_{mA}$=1.67$e^{-1.65V_t}$ $H_{mB}$=1.15$e^{-1.13V_t}$, in the full-scale net ($V_t$ : k't) $H_{fA}$=50.27$e^-0.37V_t$ $H_{fB}$=34.46$e^{-0.26Vt}$. 2. Horizontal opening of the model nets An and b was varied in the range of 1.03~1.54m and 1.04~1.55 m (which can be converted into 30.9~46.2 m and 31.2~46.5m in the full-scale net) respectively, and was varied predominantly by distance between paired boats. Horizontal opening (W, appendixes are as same as the former) an be expressed as the function of distance between paired boats $D_b$as in the model net $W_{mA}$=0.69+0.09$D_b$ $W{mB}$=0.73+0.09$D_b$, in the full-scale net $W_{fA}$=20.81+0.09$D_b$ $W_{fB}$=22.11+0.09$D_b$ 3. Net opening area of the model net A and B was varied in the range of 0.28~1.04 $m^2$ and 0.33~0.94$m^2$(which can be converted into 252~936$m^2$ and 297~846$m^2$ in the full-scale net) respectively, and was varied predominantly by towing velocity. Net opening area ($S$, appendixes are as same as the former) van be expressed as the function of towing velocity$V_t$ as in the model net $v_t$ : m/sec) $S_{Ma}$=2.01$e^{-1.54V_T}$ $S_{mA}$=1.40$e^{-1.65V_t}$, in the full-scale net ($V_t$ : k't) $S_{fA}$=1.807$e^-0.35V_t$ $S_{fA}$=1.265$e^{-0.24V_t}$. 4. Filtering volume of the model nets A and B was varied in the range of 0.32~0.55 $m^3$ and 0.37~0.55$m^3$(which can be converted into 8.640~14.850 $m^3$ and 9.990~14.850$m3$in the full~scale net) respectively, and was predominantly varied by towing speed. filtering volume of the model net-A showed the maximum at the towing speed 0.69 m/sec(3 k't in the full-scale net), compared with that of the model net B showed at 0.92 m/sec(4 k't in the full-scale net).

  • PDF

Development for Fishing Gear and Method of the Non-Float Midwater Pair Trawl Net (II) - Opening Efficiency of the Model Net according to Front Weight and Wing-end Weight - (무부자 쌍끌이 중층망 어구어법의 개발 (II) - 추와 날개끝 추의 무게에 따른 모형어구의 전개성능 -)

  • 유제범;이주희;이춘우;권병국;김정문
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.3
    • /
    • pp.189-196
    • /
    • 2003
  • In this study, the vertical opening of the non-float midwater pair trawl net was maintained by controlling the length of upper warp. This was because the head rope was able to be kept linearly and the working depth was not nearly as changed with the variation of flow speed as former experiments in this series of studies have demonstrated. We confirmed that the opening efficiency of the non-float midwater pair trawl net was able to be developed according to the increase in front weight and wing-end weight. In this study, we described the opening efficiency of the non-float midwater pair trawl net according to the variation of front weight and wing-end weight obtained by model experiment in circulation water channel. We compared the opening efficiency of the proto type with that of the non-float type. The results obtained can be summarized as follows:1. The hydrodynamic resistance was almost increased linearly in proportion to the flow speed and was increased in accordance with the increase in front weight and wing-end weight. The increasing rate of hydrodynamic resistance was displayed as an increasing tendency in accordance with the increase in flow speed. 2. The net height of the non-float type was almost decreased linearly in accordance with the increase in flow speed. As the reduced rate of the net height of the non-float type was smaller than that of the net height of the proto type against increase of flow speed, the net height of the non-float type was bigger than that of the proto type over 4.0 knot. The net width of the non-float type was about 10 m bigger than that of the proto type and the change rate of net width varied by no more than 2 m according to the variation of the front weight and wing-end weight. 3. The mouth area of the non-float type was maximized at 1.75 ton of the front weight and 1.11 ton of the wing-end weight, and was smaller than that of the proto type at 2.0∼3.0 knot, but was bigger than that of the proto type at 4.0∼5.0 knot. 4. The filtering volume was maximized at 3.0 knot in the proto type and at 4.0 knot in the non-float type. The optimal front weight was 1.40 ton.