• 제목/요약/키워드: warm water curing

검색결과 8건 처리시간 0.026초

50, 60℃ 온수양생을 이용한 초고강도 콘크리트의 강도 조기 평가 (A Study on the Early Evaluation of Compressive Strength of Ultra-High Strength Concrete Using 50, 60℃ Warm Water Curing)

  • 이종석;명로언;백민수;공민호;하정수;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 1부
    • /
    • pp.73-75
    • /
    • 2011
  • In this study, prediction of later-age compressive strength of ultra-high strength concrete, based on the accelerated strength of concrete cured in 50, 60℃ warm water was investigated. W/B of 32, 23.5, 19% 3 levels were examined. And the specimens were cured in 50, 60℃ warm water. The results showed reliable accuracy by regression relation between 28day strength cured by standard curing method and accelerated strength of the concrete cured in warm water. And the specimens cured in 50, 60℃ showed more high strength development. So 60℃ curing could be considered in order to reduce the measurement error. As a result, the feasibility of 50, 60℃ warm water curing method at high strength level was confirmed.

  • PDF

온수양생법에 의한 콘크리트 강도의 조기판정에 관한 연구 (Earlier Prediction of Concrete Strength by The Warm Water Method)

  • 김수만;유종희
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.119-123
    • /
    • 1995
  • This paper presents an accelerated-curing method by the war water method and discusses how these methods can be adapted for regular quality control and quality assurance of concret. Accelerated strength test data can be used for estimating the furture stength, e.g. the 28-day strength. An accelerated-curing method to predict the 28-day strength of concrete from 1-day warm water-cured test results was evaluated in the laboratory and the field. For these evaluations test are performed for 1845 standard specimens from 123 different batches of concrete. The results of this study the equation applicable universally with resonable accuracy are presented for estimating the potential strength of concrete by the warm water-curing method.

  • PDF

80℃ 온수양생을 이용한 초고강도 콘크리트의 조기 강도 예측에 관한 연구 (A Study on the Prediction of Ultra-High Strength Concrete Using 80℃ Warm Water Method)

  • 여상길;하정수;명로언;김학영;공민호;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.93-94
    • /
    • 2012
  • In this study, prediction of later-age compressive strength of ultra-high strength concrete, based on the accelerated strength of concrete cured in 80℃ warm water was investigated. As a result, the nature of ultra-high strength concrete showed a rapid early strength enhancement, compressive strength using warm water method of 80℃ at 2days is same compressive at 28days using standard curing.

  • PDF

양생방법에 따른 콘크리트의 역학적 특성에 관한 실험적 연구 (The Experimental Study of Characteristics of Concrete Strength according to the pattern of curing)

  • 이준구;윤상대;박광수;최광선;김명원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.695-702
    • /
    • 1998
  • The purpose of this study is to investigate the mechanical properties of precast concrete cured by accelerated curing methods such as, steam curing method and warm water curing method varing maximum temperature of curing along to the period of curing. Some specimens are cured by accelerated curing method(warm water curing method) and then deposited in the storehouse. The others are deposited in the storehouse directly. All of these are cured until being tested to compare these two group's mechanical characteristics for each period 3days, 7days, 28days. The goal of this comparison is to estimate the efficiency of accelerated curing method in the case of precast concrete stocked in the field or warehouse for a long term and to make guide line for factory manager to make a economical products of concrete of a good quality. We can conclude some guide lines 1) It is not efficient to cure concrete with accelerated method at higher than 80℃. 2) The continuing of curing period more than 36hr makes damage to concrete in using accelerated curing method. 3) The strength revelation of concrete cured by accelerated curing methods, added rice husk ash more delayed than OPC concrete done but the strength of maximum value is higher than OPC concrete. 4) It is not efficient to use accelerated curing method in the case of storing the products for more than 7days in the aspect of mechanical properties.

  • PDF

고온 양생방법을 이용한 고강도 콘크리트의 미세공극과 강도발현 관계에 대한 연구 (Method for high temperature curing and strength development of high strength concrete micropores Relationship)

  • 이한용;김성덕;이영도;명로언;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.58-59
    • /
    • 2013
  • In this study, the standard specimen heated to curing experiments and simulation experiments the absence of porosity distribution and the effect on the compressive strength has been investigated.

  • PDF

촉진양생법에 의한 고로슬래그 미분말 혼합 콘크리트의 압축강도 예측 (Compressive strength prediction of concrete using ground granulated blast furnace slag by accelerated testing)

  • 김용직;김영진;최연왕
    • 한국건설순환자원학회논문집
    • /
    • 제4권4호
    • /
    • pp.91-98
    • /
    • 2009
  • 최근 시멘트 및 골재 등 원재료 값의 상승 및 세계적인 유가 급등으로 인한 운송비의 증가로 레미콘 제조원가는 상승하고 있다. 그러나 레미콘 제조업체들 간의 과다한 경쟁으로 인해 레미콘의 납품 단가는 오히려 낮아지고 있는 실정이다. 이를 극복하기 위한 일환으로 레미콘 제조업체들은 레미콘의 제조원가를 최소한으로 줄이고자 하는 노력 중 하나로 고로슬래그 미분말 및 플라이애시를 혼화재로 사용하는 업체가 증가하고 있다. 그러나 이러한 광물질 혼화재를 사용한 콘크리트의 품질관리에 대한 연구는 미흡한 실정이다. 따라서, 본 연구에서는 고로슬래그 미분말 혼합 콘크리트의 28일 압축강도를 조기에 예측하기 위해 촉진양법을 이용하였다. 고로슬래그 미분말 혼합률 별로 선형회귀분석을 실시하여 추정식을 제시하였고 90%의 신뢰구간을 나타내었다. 또한 실험의 신뢰성을 높이기 위해 모든 배합은 3회 반복하였고, 배합순서는 랜덤추출법을 사용하였다. 이러한 실험결과 촉진양생법에 의한 1일 촉진강도로서 고로슬래그 미분말 혼합 콘크리트의 재령 28일 압축강도를 예측할 수 있는 추정식의 신뢰성을 확인하는 성과를 얻었다.

  • PDF

폴리우레탄 디아크릴레이트의 미세다공성 UV코팅에 의한 PET 직물의 투습방수가공 (Breathable Waterproof Finish of PET Fabrics via Microporous UV Coating of Polyurethane Diacrylate)

  • 구광회;장진호
    • 한국염색가공학회지
    • /
    • 제22권3호
    • /
    • pp.239-245
    • /
    • 2010
  • Breathable waterproof PET fabrics were prepared by the UV coating of UV-curable polyurethaneacrylate(PUA) formulation mixed with polyethyleneglycol(PEG) as a water soluble pore former. The dispersed PEG in the UV-cured coating was extracted by warm water, which can generate individual circular pores uniformly distributed all over the coating instead of pore channels. Accordingly the moisture permeability of the microporously coated fabrics increased substantially with increasing PEG addition without significant reduction of hydrostatic pressure. Also the silicone diacrylate addition in the formulation was beneficial in increasing the hydrostatic pressure. The UV-based microporous coating can be an alternative to conventional thermal curing of solventborne polyurethane coating owing to the enhanced environment friendliness and energy saving.

Effects of hydrogen peroxide pretreatment and heat activation of silane on the shear bond strength of fiber-reinforced composite posts to resin cement

  • Pyun, Jung-Hoon;Shin, Tae-Bong;Lee, Joo-Hee;Ahn, Kang-Min;Kim, Tae-Hyung;Cha, Hyun-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권2호
    • /
    • pp.94-100
    • /
    • 2016
  • PURPOSE. To evaluate the effects of hydrogen peroxide pretreatment and heat activation of silane on the shear bond strength of fiber-reinforced composite posts to resin cement. MATERIALS AND METHODS. The specimens were prepared to evaluate the bond strength of epoxy resin-based fiber posts (D.T. Light-Post) to dual-curing resin cement (RelyX U200). The specimens were divided into four groups (n=18) according to different surface treatments: group 1, no treatment; group 2, silanization; group 3, silanization after hydrogen peroxide etching; group 4, silanization with warm drying at $80^{\circ}C$ after hydrogen peroxide etching. After storage of the specimens in distilled water at $37^{\circ}C$ for 24 hours, the shear bond strength (in MPa) between the fiber post and resin cement was measured using a universal testing machine. The fractured surface of the fiber post was examined using scanning electron microscopy. Data were analyzed using one-way ANOVA and post-hoc analysis with Tukey's HSD test (${\alpha}=0.05$). RESULTS. Silanization of the fiber post (Group 2) significantly increased the bond strength in comparison with the non treated control (Group 1) (P<.05). Heat drying after silanization also significantly increased the bond strength (Group 3 and 4) (P<.05). However, no effect was determined for hydrogen peroxide etching before applying silane agent (Group 2 and 3) (P>.05). CONCLUSION. Fiber post silanization and subsequent heat treatment ($80^{\circ}C$) with warm air blower can be beneficial in clinical post cementation. However, hydrogen peroxide etching prior to silanization was not effective in this study.