• Title/Summary/Keyword: wall-frame

Search Result 556, Processing Time 0.032 seconds

Cloning of celC, Third Cellulase Gene, from Pectobacterium carotovorum subsp. carotovorum LY34 and its Comparison to Those of Pectobacterium sp.

  • LIM WOO JIN;RYU SUNG KEE;PARK SANG RYEOL;KIM MIN KEUN;AN CHANG LONG;HONG SU YOUNG;SHIN EUN CHULE;LEE JONG YEOUL;LIM YONG PYO;YUN HAN DAE
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.302-309
    • /
    • 2005
  • Phytopathogenic Pectobacterium carotovorum subsp. carotovorum (Pcc) LY34 secretes multiple isozymes of the plant cell wall degrading enzyme endoglucanases. We have cloned a third cel gene encoding CMCase from Pcc LY34. The structural organization of the celC gene (AY188753) consisted of an open reading frame (ORP) of 1,116 bp encoding 371 amino acid residues with a signal peptide of 22 amino acids within the NH$_2$-terminal region of pre-CelC. The predicted amino acid sequence of CelC was similar to that of Peetobaeterium ehrysanthemi Cel8Y (AF282321). The CelC has the conserved region of the glycoside hydrolase family 8. The apparent molecular mass of CelC was calculated to be 39 kDa by CMC-SDS-PAGE. The cellulase­minus mutant of Pee LY34 was as virulent as the wild-type in pathogenicity tests on tubers of potato. The results suggest that the CelC of Pce LY34 is a minor factor for the pathogenesis of soft-rot.

Development of Drift Design Method for High-rise Buildings Considering Characteristics of Member Forces (부재력 특성을 고려한 설계변수를 사용한 고층건물 변위조절설계법 개발)

  • 서지현;박효선
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.215-222
    • /
    • 2004
  • Drift design methods using resizing techniques have been presented as a practical drift control methods of high-rise buildings. Most drift design methods using the resizing techniques have adopted the cross-sectional area as the design variables for all structural members in a structure. However, the cross-sectional area is not always governing sectional property for the structural members, but the governing sectional property of each member is dependent on the characteristics of member forces. In this paper, a drift design method using the sectional property related to the governing displacement participation factor as the design variable of each member is presented and applied to the drift design of 20-story steel frame-shear wall system. It can be noted from example test that drift design method considering member characteristics shows similar or somewhat better results in the view point of structural weights and the accuracy of displacement estimation.

A Study on the Seismic Behavior of Small-Size Reinforced Concrete Buildings in Korea (국내 소규모 철근콘크리트 건축물의 내진거동 고찰)

  • Kim, Taewan;Eom, Taesung;Kim, Chul-Goo;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.171-180
    • /
    • 2014
  • Since the execution of structural design by professional structural engineers is not mandatory for small-size buildings in Korea, structural design is conducted by architects or contractors resulting in concern about the seismic safety of the buildings. Therefore, the Korean Structural Engineers Association proposed dedicated structural design criteria in 2012. The criteria were developed based on a deterministic approach in which the structural members are designed only with information of story and span length of the buildings and without structural analyses. However, due to the short time devoted to their development, these criteria miss satisfactory basis and do not deal with structural walls popularly used in Korea. Accordingly, the Ministry of Land, Infrastructure and Transport launched a research on the 'development of structural performance enhancement technologies for small-size buildings against earthquakes and climate changes'.. As part of this research, this paper intends to establish direction for the preparation of deterministic structural design guidelines for seismic safety of domestic small-size reinforced concrete buildings. To that goal, a typical plan of these buildings is selected considering frames only and frames plus walls, and then design is conducted by changing the number of stories and span length. Next, the seismic performance is analyzed by nonlinear static pushover analysis. The results show that the structural design guidelines should be developed by classifying frames only and frames plus walls. The size and reinforcement of structural elements should be provided in the middle level of the current Korean Building Code and criteria for small buildings by considering story and span length for buildings with frames only, and determined by considering the shape and location of walls and the story and span length as well for buildings with frames plus walls. It is recommended that the design of walls should be conducted by reducing the amount of walls along with symmetrically located walls.

A Study on the Exterior Color of Housing in Rural Area Comparing with Traditional Housing Color (농촌지역 전통, 개량 및 신축주택 외장색채 비교분석 연구)

  • Paik, Suk-Jong
    • Journal of the Korean housing association
    • /
    • v.19 no.6
    • /
    • pp.157-166
    • /
    • 2008
  • Until 1960, the major housing type of rural area in Korea was traditional wooden frame building, which was made of natural materials. In the course of modernization and New Village Movement, most of traditional houses have been renovated focusing on changing roof material of rice straw into slate, keeping existing main wooden structure. And then from around 1980, by economical development the new houses have been constructed. On these three phases of traditional type, remodeling type and new construction type, the natural materials of housing facade as wood, soil, stone and plant changed into artificial materials as cement, chemical material and paint. At the same time the exterior color of housing also have been changed and varied. The purpose of this thesis is to find out the changing aspect of exterior color by comparing remodeled and new constructed housing with of traditional housing. The exterior color of one hundred and fifty seven houses were surveyed and the three color attributes of each part of facade, as roof, wall and window, were analyzed and compared. In case of traditional houses, 98.3% of color are concentrated on the warm color of Y and YR on HUE scale, and 88% of their color are low Chroma. And Value of their color has been varied and spreaded from low to high Value scale. From traditional types to remodeled and new constructed houses, the concentration ratio of warm color on Hue scale reduced from 98.3% to 68.7% and ratio of low Chroma was also changed from 88% to 73.2% and the ratio of low Value color reduced from 51.9% to 29.7%. The exterior color of houses in rural area varied on Hue, and the more saturated colors were used and they became brighter compared with color of traditional houses. It is expected that the results of this study can be used for basic data of exterior color planning and improvement into harmonized color with natural environment.

Cloning and overexpression of lysozyme from Spodoptera litura in prokaryotic system

  • Kim, Jong-Wan;Park, Soon-Ik;Yoe, Jee-Hyun;Yoe, Sung-Moon
    • Animal cells and systems
    • /
    • v.15 no.1
    • /
    • pp.29-36
    • /
    • 2011
  • Insect lysozymes are basic, cationic proteins synthesized in fat body and hemocytes in response to bacterial infections and depolymerize the bacterial cell wall. The c-type lysozyme of the insect Spodoptera litura (SLLyz) is a single polypeptide chain of 121 residues with four disulfide bridges and 17 rare codons and is approximately 15 kDa. The full-length SLLyz cDNA is 1039 bp long with a poly(A) tail, and contains an open reading frame of 426 bp long (including the termination codon), flanked by a 54 bp long 5' UTR and a 559 bp long 3' UTR. As a host for the production of high-level recombinant proteins, E. coli is used most commonly because of its low cost and short generation time. However, the soluble expression of heterologous proteins in E. coli is not trivial, especially for disulfide-bonded proteins. In order to prevent inclusion body formation, GST was selected as a fusion partner to enhance the solubility of recombinant protein, and fused to the amplified products encoding mature SLLyz. The expression vector pGEX-4T-1/rSLLyz was then transformed into E. coli BL21(DE3)pLysS for soluble expression of rSLLyz, and the soluble fusion protein was purified successfully. Inhibition zone assay demonstrated that rSLLyz showed antibacterial activity against B. megaterium. These results demonstrate that the GST fusion expression system in E. coli described in this study is efficient and inexpensive in producing a disulfide-bonded rSLLyz in soluble, active form, and suggest that the insect lysozyme is an interesting system for future structural and functional studies.

A Study on the Planning at the Pilotis Spaces of the Public Apartment Housing (Focused on the Structural Change) (임대아파트 필로티 공간의 계획에 관한 연구 (라멘구조로의 구조적 변화를 중심으로))

  • Ha, Song-Byung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.959-969
    • /
    • 2011
  • The purpose of this study is to analyze the present conditions of the pilotis spaces of the public apartment housing and to suggest the future planning means of the spaces. At the present time, most of the pilotis space has been constructed in wall-bearing method. However, post and beam method(or Rahmen) will be used due to the municipal public-housing policy. Observation of seven(7) different locations and twenty-eight(28) blocks, and interview with the residents were employed to gather the data. Regarding functional relevance, six types of the space were selected, and planning suggestions for each type were followed. Among others, the conclusions include: the pilotis space should be planned as an interior for the future, as well as it should be open enough to secure the view from the surroundings.

Study of the organic characteristics between Korean traditional aesthetic of architecture and the natural beauty being intrinsic in traditional furniture (한국 전통건축미(美)와 전통가구에 내재된 자연미(美)의 유기적 특징 연구)

  • Rim, Kwang-Soon
    • Journal of the Korea Furniture Society
    • /
    • v.20 no.5
    • /
    • pp.504-516
    • /
    • 2009
  • Korean traditional architecture has been carried out in the manner that it harmonized surrounding natural environments and never disturbed them in the scale which did not overwhelm the nature, based on the view of architecture predicated on Yin Yang School. The exposed grain of the wood like pillar, hinge and house rafte, the linear expression of the construction material and the formation between the window and door monopolizing the front side presented a harmony with the nature showing the linear structure. Furthermore the ceiling is low due to the sit life style thanks to the ondol (Korean under-floor heating system and the furniture was made in simple manner to utilize the space as large as possible, for the interior was narrow and close, and also the furniture placing in the middle of the room was movably manufactured to improve the room space. Like this Korean traditional furniture was close associated with the low height and simplicity and harmonized with the blank of the wall accordingly, and it characterized linear & planar natural beauty focusing on the simple and refined unique beauty, because it was made in a good harmony with the interior utensils. This study has presented that the organic characteristics of Korean traditional aesthetic of architecture and the natural beauty being intrinsic in traditional furniture have a mutual relation on the basis of not only the visual recognition, also the aesthetic of naturalism made of the natural material, the constructional naivety as a frame method and the linear & planar formative beauty shown in appearance.

  • PDF

A Study on the Structural Characteristics and Metal Ornament of Jeonju-Jang (전주장의 구조적 특징과 금구장식 연구)

  • Baik, Da hee;Lim, Seung Taek
    • Journal of the Korea Furniture Society
    • /
    • v.28 no.3
    • /
    • pp.207-223
    • /
    • 2017
  • Jeonju-Jang is the wood furniture that was made in Chonbuk Jeonju province during the Joseon Dynasty, and was used by middle-upper social classes. It has value as a local cultural heritage because it has unique characteristics in terms of the shape of the furniture, the metal ornament and various functions are integrated in accordance with user's requirements. Therefore, the purpose of this study is to define the structural characteristics of the Jeonju-Jang through case studies of 16 existing artifacts in order to preserve and inherit the value as local cultural resources. The conclusion is as follows. First, Jeonju-Jang in the late period of Joseon Dynasty that is made up of one board to the bottom with the binding of the board. and the front wall, the Juibyuckkan and the Meoruemkan are omitted or made small, so the structure of the surface is simple. There are three or four drawers under the Cheon pan(top plate). There are drawers and shelf inside the hinged door. In the case of a two-layer type, there is a Gaegumeong type door which has half of one side hinged. Second, Jeonju-Jang of the Japanese Ruling Era had a Juibyuckkan by frame binding and an increase in the number of Meoruemkan. and it had independent legs. The Cheon-pan(top plate) was more left and right than both sides. Third, in the late Joseon Dynasty period as a feature of the metal ornaments, cast iron and yellow brass were used as materials. In the Japanese Ruling Era, nickel was mainly used. Various patterns were engraved and the number increased, and it became gorgeous surface as a whole.

Hysteretic performance of SPSWs with trapezoidally horizontal corrugated web-plates

  • Kalali, Hamed;Hajsadeghi, Mohammad;Zirakian, Tadeh;Alaee, Farshid J.
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.277-292
    • /
    • 2015
  • Previous research has shown that steel plate shear walls (SPSWs) are efficient lateral force-resisting systems against both wind and seismic loads. A properly designed SPSW can have high initial stiffness, strength, and energy absorption capacity as well as superior ductility. SPSWs have been commonly designed with unstiffened and stiffened infill plates based on economical and performance considerations. Recent introduction and application of corrugated plates with advantageous structural features has motivated the researchers to consider the employment of such elements in stiffened SPSWs with the aim of lowering the high construction cost of such high-performing systems. On this basis, this paper presents results from a numerical investigation of the hysteretic performance of SPSWs with trapezoidally corrugated infill plates. Finite element cyclic analyses are conducted on a series of flat- and corrugated-web SPSWs to examine the effects of web-plate thickness, corrugation angle, and number of corrugation half-waves on the hysteretic performance of such structural systems. Results of the parametric studies are indicative of effectiveness of increasing of the three aforementioned web-plate geometrical and corrugation parameters in improving the cyclic response and energy absorption capacity of SPSWs with trapezoidally corrugated infill plates. Increasing of the web-plate thickness and number of corrugation half-waves are found to be the most and the least effective in adjusting the hysteretic performance of such promising lateral force-resisting systems, respectively. Findings of this study also show that optimal selection of the web-plate thickness, corrugation angle, and number of corrugation half-waves along with proper design of the boundary frame members can result in high stiffness, strength, and cyclic performances of such corrugated-web SPSWs.

The July 2, 2017, Lantian landslide in Leibo, China: mechanisms and mitigation measures

  • He, Kun;Ma, Guotao;Hu, Xiewen;Liu, Bo;Han, Mei
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.283-298
    • /
    • 2022
  • Landslides triggered by the combination of heavy precipitation and anthropological disturbance in hilly areas cause severe damage to human lives, properties, and infrastructure constructions. A comprehensive investigation of the influencing factors and failure mechanisms of landslides are significant for disaster mitigation and prevention. This paper utilized the combination of detailed geological investigation, physical experimental testing as well as numerical modelling to determine the failure mechanism, and proposed a countermeasures of the Lantian landslide occurred on 2, July 2017. The results reveal that the Lantian landslide is a catastrophic reactivated slide which occurred in an active tectonic region in Southwest China. Because of the unique geological settings, the fully to highly weathered basalts in the study area with well-developed fractures favored the rainwater infiltration, which is the beneficial to slide reactivation. Engineering excavation and heavy precipitation are the main triggering factors to activate the slide motion. Two failure stages have been identified in the landslide. The first phase involves a shallow mass collapse originated at the upper slopes, which extends from the road to platform at rear part, which is triggered by excavation in the landslide region. Subjected to the following prolonged rainfall from 19 June to 2 July, 2017, the pore water pressure of the slope continually increased, and the groundwater table successively rise, resulting in a significant decrease of soil strength which leads to successive large-scale deep slide. Thereinto, the shallow collapse played a significant role in the formation of the deep slide. Based on the formation mechanisms of the landslide, detailed engineering mitigation measures, involving slope cutting, anchor cable frame, shotcrete and anchorage, retaining wall and intercepting ditch were suggested to reduce the future failure risk of the landslide.