• Title/Summary/Keyword: wall shear stress distributions

Search Result 56, Processing Time 0.023 seconds

Wall shear stress and Pressure Distributions of Developing Turbulent Oscillatory Flows in a Square sectional Curved Duct (곡관덕트에서 난류진동유동의 전단응력분포와 압력분포)

  • Lee, H.G.;Son, H.C.;Lee, H.N.;Park, G.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.380-385
    • /
    • 2001
  • In the present study, flow characteristics of turbulent oscillatory flow in a square-sectional $180^{\circ}$ curved duct are investigated experimentally. In order to measure wall shear stress and pressure distributions, experimental studies for air flow are conducted in a square-sectional $180^{\circ}$ curved duct by using the LDV system with the data acquisition and the processing system. The wall shear stress measuring point bend angle of the $150^{\circ}$ and pressure distribution of the inlet (${\phi}=0^{\circ}$) to the outlet (${\phi}=180^{\circ}$) at $10^{\circ}$ intervals of the duct. The results obtained from the experimentation are summarized as follows: A wall shear stress value in an inner wall is larger than that in an outer wall, except for the phase angle (${\omega}t/{\pi}/6$) of 3, because of the intensity of secondary flow. The pressure distributions are the largest in accelerating and decelerating regions at the bend angle(${\phi}$) of $90^{\circ}$ and pressure difference of inner and outer walls is the largest before and after the ${\phi}=90^{\circ}$.

  • PDF

Wall Shear Stress and Pressure Distributions of Developing Turbulent Oscillatory Flows in an Oscillator Connected to Curved Duct (가진 펌프에 연결된 곡관덕트에서 난류진동유동의 전단응력분포와 압력분포)

  • Sohn, Hyun-Chull;Lee, Hong-Gu;Lee, Haeng-Nam;Park, Gil-Moon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.4 s.13
    • /
    • pp.37-42
    • /
    • 2001
  • In the present study, flow characteristics of turbulent oscillatory flow in an oscillator connected to square-sectional $180^{\circ}$ curved duct are investigated experimentally. In order to investigate wall shear stress and pressure distributions, the experimental studies for air flows we conducted in a square-sectional $180^{\circ}$ curved duct by using the LDV system with the data acquisitions and the processing system. The wall shear stress at bend angle of the $150^{\circ}$ and pressure distribution of the inlet (${\phi}=0^{\circ}$) to the outlet (${\phi}=180^{\circ}$) by $10^{\circ}$ intervals of the duct are measured. The results obtained from the experiment are summarized as follows : wall shear stress values in the inner wall we larger than those in an outer wall, except for the phase angle (${\omega}t/{\pi}/6$) of 3, because of the intensity of secondary flow. The pressure distributions are the largest in accelerating and decelerating regions at the bend angle(${\phi}$) of $90^{\circ}$ and pressure difference of inner and outer walls is the largest before and after the ${\phi}=90^{\circ}$.

  • PDF

Velocity Profile and Wall Shear Stress Distributions of Developing Turbulent Oscillatory Flows in an Oscillator Connected to Straight Duct Located in Exit Region of a Curved Duct (가진 펌프에 연결된 곡관 출구의 직관에서 난류진동유동의 속도분포와 전단응력분포)

  • 손현철;이행남;박길문
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1378-1386
    • /
    • 2002
  • In the present study, velocity profile and wall shear stress distributions of developing turbulent oscillatory flows in an oscillator connected to straight duct located in exit region of a curved duct was investigated experimentally. The experimental study for air flows was conducted to measure axial velocity profiles, shear stress distributions by using the Laser Doppler Velocimetry(LDV) system with the data acquisition and processing system of Rotating Machinery Resolver(R.M.R) and PHASE software. The results obtained from experimental studies are summarized as follows. The critical Reynolds number for a change from transitional oscillatory flow to turbulent flow was about 7500, in the 60region of dimensionless axial position which was considered as a fully developed flow region. The turbulent oscillatory flow, velocity profiles of the inflow period in the entrance region were gradually developed, but those of the outflow period were not changed nearly. Velocity profiles of inflow and outflow were shown as a symmetric form in a fully developed flow region. The wall shear stress distributions of turbulent oscillatory flow increase rapidly as the flow proceeds to downstream and flow was in good agreement with the theoretically.

The Wall Shear Rate Distribution Near an End-to-End Anastomosis : Effects of Graft Compliance and Size

  • Rhee, Kye-Han
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.1
    • /
    • pp.41-47
    • /
    • 2003
  • The patency rates of small diameter vascular grafts are disappointing because of the formation of thrombus and intimal hyperplasia. Among the various factors influencing the success of graft surgery, the compliance and the size of a graft are believed to be the most important physical properties of a vascular graft. Mismatch of compliance and size between an artery and a graft alters anastomotic flow characteristics, which may affect the formation of intimal hyperplasia. Among the hemodynamic factors influencing the development of intimal hyperplasia, the wall shear stress is suspected as the most important one. The wall shear stress distributions are experimentally measured near the end-to-end anastomosis models in order to clarify the effects of compliance and diameter mismatch on the hemodynamics near the anastomosis. The effects of radial wall motion, diameter mismatch and impedance phase angle on the wall shear rate distributions near the anastomosis are considered. Compliance mismatch generates both different radial wall motion and instantaneous diameter mismatch between the arterial portion and the graft portion during a flow cycle. Mismatch in diameter seems to be affecting the wall shear rate distribution more significantly compared to radial wall motion. The impedance phase angle also affects the wall shear rate distribution.

  • PDF

Fluid Dynamics near end-to-end Anastomoses Part III in Vitro wall Shear Stress Measurement

  • Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.253-262
    • /
    • 1992
  • The wall shear stress in the vicinity of end-to end anastomoses under steady flow condi- tions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experi- mental measurements were in good agreement lith numerical results except In flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compli- ance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia (ANFH) in end-to-end anastomoses.

  • PDF

Numerical Analysis on the Effect of Wall Shear Stress Around the Ring Drug-Eluting Stent (고리형 약물분출 스텐트 주위 벽전단응력의 영향에 대한 수치해석)

  • Seo, Tae-Won;Barakat, Abdul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.21-28
    • /
    • 2007
  • The use of drug-eluting stents has dramatically reduced the incidence of restenosis however, much remains to be teamed about the performance of these stouts. In the present study, we tested the hypothesis that the design of drug-eluting stents influences the efficacy of local drug delivery to the arterial wall and that this effect depends on both arterial geometry and the prevailing flow conditions. We performed computational simulations in which the coupled Navier-Stokes and advection-diffusion equations were solved to determine the flow field and drug concentration in the vicinity of model drug-eluting stouts It is found that the characteristics of flow phenomena can be influenced greatly by the ratio of stent diameter to vessel diameter. The presence of drug-eluting stent may have profound effect on wall shear stresses, recirculation sizes and drug distributions. The results show that recirculation zone is influenced by the imposed flow conditions and stent diameter. In pulsatile flow, the low wall shear stress and high drug concentration occur along the arterial wall during the decelerating flow conditions. These results could provide the guideline for future drug-eluting stent designs toward reducing restenosis by affecting local wall shear stress distributions associated with neointimal hyperplasia.

An Experimental Study on Flow Characteristics of Turbulent Pulsating Flow in a Curved Duct by using LDV (LDV에 의한 곡관덕트에서 난류맥동유동의 유동특성에 관한 실험적 연구)

  • Lee, Hong-Gu;Son, Hyun-Chul;Lee, Haeng-Nam;Park, Gil-Moon
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.397-403
    • /
    • 2000
  • In the present study, flow characteristics of turbulent pulsating flow in a square-sectional $180^{\circ}$ curved duct were experimentally investigated. Experimental studies for air flows were conducted to measure axial velocity and wall shear stress distributions and entrance length in a square-sectional $180^{\circ}$ curved duct by using the LDV with the data acquisition and the processing system. The experiment was conducted in seven sections from the inlet (${\phi}=0^{\circ}$) to the outlet (${\phi}=180^{\circ}$) at $30^{\circ}$ intervals of the duct. The results obtained from the experimentation were summarized as follows ; (1) When the ratio of velocity amplitude ($A_1$) was less than one, there was hardly any velocity change in the section except near the wall and any change in axial velocity distributions along the phase. When the ratio of velocity amplitude ($A_1$) was 0.6, the change rate of velocity was slow. (2) Wall shear stress distributions of turbulent pulsating flow were similar to those of turbulent steady flow. The value of the wall shear stress became minimum in the inner wall aid gradually increased toward the outer wall where it became maximum. (3) The entrance length of turbulent pulsating flow reached near the region of bend angle of $90^{\circ}$, like that of turbulent steady flow. The entrance length was changed by the dimensionless angular frequency (${\omega}^+$).

  • PDF

EEG Signal Processing in Japan

  • Utsunomiya, Toshio
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.9-12
    • /
    • 1985
  • The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses.

  • PDF

Velocity and Shear Stress Distributions for Steady and Physiological Flows in the Abdominal Aorta/lLIAC Artery Bifurcation (복부대동맥/장골동맥 분기혈관내 정상 및 박동성 유동의 속도와 전단응력분포)

  • 서상호
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.179-186
    • /
    • 1997
  • Steady and physiological flows of a Newtonian fluid and blood in the abdominal gorta/iliac artery bifurcation are numerically simulated to understand the etiology and pathogenesis of atherosclerosis. Distributions of velocity, pressure, and wall shear stress in the bifurcated arterial vessel model are calculated to investigate the differences of flow characteristics between steady and physiological flows and to compare flow characteristics of blood with that of a Newtonian fluid For the given Reynolds number the flow characteristics of physiological flows for a Newtonian fluid and blood in the bifurcated arterial vessel are quite different from thcse of steady flows. No flow separation or flow reversal in the bifurcated region appears downstream of a stenosis during the acceleration phase. However, during the deceleration phase the flow exhibits flow separation in the outer walls of daugtlter branches, which extends to the entire wall region.

  • PDF

Investigation on the Turbulence Structure of Reattaching Separated Shear Layer Past a Two-Dimensional Vetrical Fenc(I) (2次元 垂直壁을 지니는 再附着 剝離 斷層 의 亂流構造 에 관한 硏究 (I))

  • 김경천;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.403-413
    • /
    • 1985
  • Hot-wire measurements of second and third-order mean products of velocity fluctuations have been made in the separated, reattached, and redeveloping boundary layer behind a vertical fence. Mean velocity, wall static pressure distributions have also been measured in the whole flow field. Upstream of the reattachment point, the separated shear layer developes as a free mixing layer, but the gradient of the maximum slope thickness, turbulent intensities and the Reynolds shear stress are higher than that of the mixing layer due to initial streamline curvature and the effects of highly turbulent recirculating flow region. In the reattachment region, Reynolds shear stress and triple products near the surface is far more rapid than the decrease of the shear stress; that is the presence of the solid wall has a marked effect on the apparent gradient diffusivity of intensity or shear stress and throws doubts upon the usefulness of the simple gradient diffusivity model in this region.