• Title/Summary/Keyword: wall reinforcement

Search Result 525, Processing Time 0.025 seconds

Seismic Evaluation of RC Special Shear Wall with Improved Reinforcement Details in Boundary Elements (경계요소의 횡보강근 상세를 개선한 RC 특수전단벽의 내진성능 평가)

  • Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.3 no.2
    • /
    • pp.195-202
    • /
    • 2012
  • This paper summarizes the seismic performance of two shear walls with different reinforcement details in boundary elements. One is a special shear wall designed by KBC2009 and the other is a shear wall with improved reinforcement details in boundary elements, which is a newly proposed type of special shear wall. Experimental tests under cyclic reversed loading were carried out with two 2/3 scale shear walls which were modelled from the lower part of seismic-resisting shear wall in 22-stories wall-slab apartment building. The experimental results show that seismic performance of shear wall with improved reinforcement details was almost similar to that of special shear wall with respect to the moment-drift ratio. However, energy dissipation capacity and ductility were slightly different. Also, shear wall with improved reinforcement details in boundary elements satisfied the inter-story drift limit of 1.5% from KBC2009.

Improvement and Evaluation for Seismic Resistant Capacity of Reinforced Concrete Shear wall with Connection Types and Diagonal Reinforcement (철근콘크리트 전단벽의 접합방식과 대각보강에 따른 내진성능 평가 및 개선)

  • Shin, Jong-Hack;Ha, Gee-Joo;An, Joon-Suk;Ju, Jung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.139-147
    • /
    • 1999
  • Six reinforced concrete shear wall, constructured with fully rigid, slit, and infilled types, were tested under both vertical and cyclic loadings. Experimental programs were carried out to evaluate the seismic performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility, under load reversals. All the specimens were modeled in one-third scale size. Based on the test results, the following conclusions can be made. For the diagonal reinforced slit and infilled shear wall specimens, it was found that the failure mode shows very effective crack control and crushing due to slippage prevention of boundary region and reduction of diagonal tension rathar than the brittle shear and diagonal tension failure. The ductility of specimens designed by the diagonal reinforcement for the slit and infilled shear wall was increased 1.72~1.81 times in comparison with the fully rigid shear wall frame. Maximum horizontal load-carrying capacity of specimens designed by the diagonal reinforcement ratio the slit and infilled shear wall was increased respectively by l.14 times and l.49 times in comparison with the standard fully rigid shear wall frame.

  • PDF

Bending and Shear Capacity of Reinforced Concrete Protective Wall (휨과 전단을 고려한 철근콘크리트 방호벽 성능에 관한 연구)

  • Young Beom Kwon;Jong Yil Park
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.44-51
    • /
    • 2023
  • With the recent increase in gas energy use, risk management for explosion accidents has been emphasized. Protective walls can be used to reduce damage from explosions. The KOSHA GUIDE D-65-2018 suggests the minimum thickness and height of protective walls, minimum reinforcement diameter, and maximum spacing of reinforcements for the structural safety of the protective walls. However, no related evidence has been presented. In this study, the blast load carrying capacity of the protective wall was analyzed by the pressure-impulse diagrams while changing the yield strength of the reinforcement, concrete compressive strength, reinforcement ratio, protective wall height, and thickness, to check the adequacy of the KOSHA GUIDE. Results show that failure may occur even with design based on the criteria presented by KOSHA GUIDE. In order to achieve structural safety of protective walls, additional criteria for minimum reinforcement yield strength and maximum height of protective wall are suggested for inclusion in KOSHA GUIDE. Moreover, the existing value for minimum reinforcement ratio and the thickness of the protective wall should be increased.

A Study on the Seismic Reinforcement of a Low-Rise Building Using Sinusoidal Corrugated Web Members (사인파형 웨브주름 보강재를 이용한 저층건물의 내진보강에 관한 연구)

  • Jung, Dong Jo;Kim, Jin
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.2
    • /
    • pp.13-20
    • /
    • 2022
  • In this study, a general low-rise building was selected to compare the new shear wall reinforcement method, which is a general method among the existing reinforcement methods, and the reinforcement method using sinusoidal corrugated web reinforcement. And it was confirmed that the following effects can be expected. Sinusoidal corrugated web members can be carried out in a short period of time as it does not require the removal of the masonry filling wall, the reinforcement of reinforcing bars, and the curing period of the concrete. It is effective in preventing damage that may occur when masonry filling wall is overturned in the out-of-plane direction, and the burden of the foundation is also reduced, and thus the construction period and cost required for reinforcement can greatly be reduced. By adjusting the number of sinusoidal corrugated web member, details of joints, and reinforcement positions, the flow of load can be induced to have an advantageous effect on the building. It can be considered as the most suitable reinforcement plan in terms of life safety. Unlike the shear wall that fills between the columns, the sinusoidal corrugated web members, which has a width of 1.5m, can install openings between two columns depending on the purpose of use, and can be expected to have a great effect in terms of usability due to its free installation location. As mentioned above, the seismic reinforcement using a sinusoidal corrugated web members, can expect great effect compared to conventional reinforcement methods in terms of usability, economic feasibility, and stability.

Research on the railroad reinforcement subgrade with short reinforcement and rigid facing (강성벽체와 단보강재를 갖는 철도보강노반에 대한 연구)

  • Kim, Dang-Sang;Kim, Ki-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.350-358
    • /
    • 2009
  • To enhance the application of the reinforced retaining walls in the railway industry, this paper suggested a type of reinforcement subgrade with short reinforcement and rigid facing. To become popular the reinforced retaining walls in the industry, the deformation of retaining walls should be controlled below some limited level. In this paper, small scale and full scale tests of the proposed retaining walls were performed and their deformation characteristics were evaluated. Even though it has short reinforcement, the rigid type retaining wall had small deformation to the external train loading than the segmental type retaining wall had.

  • PDF

Shaking Table Test and Analysis of Reinforced Concrete Frame with Steel Shear Wall with Circular Opening and Slit Damper

  • Shin, Hye-Min;Lee, Hee-Du;Shin, Kyung-Jae
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1420-1430
    • /
    • 2018
  • Earthquakes of 5.8 and 5.4 Richter scale recently occurred one after another in Korea, changing the Korean peninsula from an earthquake safe zone but 'earthquake danger zone'. Therefore, seismic reinforcements must expand to include structures with low seismic resistance in order to prepare for earthquakes on a larger scale in the future. This study investigated the performances of various seismic reinforcement systems such as X-braced steel rod reinforcement, steel shear wall with circular opening reinforcement, and slit damper reinforcement using shaking table test and computational analyses of seismic data in order to establish a proper seismic reinforcement plan. These three seismic reinforcement systems could increase the stiffness and strength of existing structures and reduce maximum drift ratio in the event of an earthquake.

Load-Displacement Formulations of Low-rise Unbounded RC Shear Walls with or without Openings

  • Lou, K. Y.;Cheng, F. Y.;Sheu, M. S.;Zhang, X. Z.
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.2
    • /
    • pp.117-130
    • /
    • 2001
  • Investigations of low-rice unbounded reinforced concrete shear walls with or without openings are performed with comparison of analytical and experimental results. Theoretical analysis is based on nonlinear finite element algorithm, which incorporates concrete failure criterion and nonlinear constitutive relationships. Studios focus on the effects of height-to-length ratio of shear walls, opening ratio, horizontal and vertical reinforcement radios, and diagonal reinforcement. Analytical solutions conform well with experimental results. Equations for cracking, yielding and ultimate loads with corresponding lateral displacements are derived by regression using analytical results and experimental data. Also, failure modes of low-rise unbounded shear walls are theoretically investigated. An explanation of change in failure mode is ascertained by comparing analytical results and ACI code equations. Shear-flexural failure can be obtained with additional flexural reinforcement to increase a wall's capacity. This concept leads to a design method of reducing flexural reinforcement in low-rise bounded solid shear wall's. Avoidance of shear failure as well as less reinforcement congestion leer these walls is expected.

  • PDF

Behavior of a Reinforced Retaining Wall During Construction (보강토의 시공중 거동 평가)

  • 노한성;최영철;백종은;김영남
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.95-100
    • /
    • 2000
  • When compared with conventional retaining wall system, there are many advantages to reinforced soil such as cost effectiveness, flexibility and so on. The use of reinforced soil have been increased in the last 17 years in Korea. In this study, a full-scale reinforced soil with rigid facing were constructed to investigate the behavior of reinforcing system. The results of soil pressure and strain of reinforcement during construction are described. The influence of compaction on soil pressure and strain of reinforcement is addressed. The results show that lateral earth pressures on the wall are active state during backfill. It is obtained that the lateral soil pressure depends on the installation condition of pressure cell and construction condition. It is also observed that maximum tensile strains of reinforcement are located on 50cm to 150cm from the wall. Long-term measurement will be followed to verify the design assumptions with respect to the distribution of lateral stress in the reinforcement

  • PDF

Rao-3 algorithm for the weight optimization of reinforced concrete cantilever retaining wall

  • Kalemci, Elif N.;?kizler, S. Banu
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.527-536
    • /
    • 2020
  • The paper represents an optimization algorithm for reinforced concrete retaining wall design. The proposed method, called Rao-3 optimization algorithm, is a recently developed algorithm. The total weight of the steel and concrete, which are used for constructing the retaining wall, were chosen as the objective function. Building Code Requirements for Structural Concrete (ACI 318-05) and Rankine's theory for lateral earth pressure were considered for structural and geotechnical design, respectively. Number of the design variables are 12. Eight of those express the geometrical dimensions of the wall and four of those express the steel reinforcement of the wall. The safety against overturning, sliding and bearing capacity failure were regarded as the geotechnical constraints. The safety against bending and shear failure, minimum and maximum areas of reinforcement, development lengths of steel reinforcement were regarded as structural constraints. The performance of proposed algorithm was evaluated with two design examples.

A Study on the Strengthening effect of Concrete Reinforcement Bracket on the External Clay Brick Wall (외부치장적벽돌 벽체에 대한 콘크리트 보강브라켓의 보강효과에 관한 연구)

  • Kim, Sun-Woo;Kim, Yang-Jung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.117-118
    • /
    • 2020
  • The masonry structure is constructed by cement mortar binding material of brick objects and uses reinforced hardware (connected hardware or wall tie) together when building. However, over time, the corrosion of reinforced steel and the deterioration of joint mortar as well as bricks cause the risk of collapse. In particular, when the externally decorated brick wall is installed on the concrete girder for each floor, the angle bracket is not constructed or corroded, the full-layer weight load is applied to the wall of 0.5B, which is an example of full-scale or collapse. The purpose of this study is to provide numerical information on the reinforcement design by experimentally studying the structural performance of concrete reinforcement brackets that reinforce the vertical load of the exterior wall.

  • PDF