• Title/Summary/Keyword: wall pressure fluctuation

Search Result 51, Processing Time 0.026 seconds

Unsteady Wall Pressure Fluctuation Generated from the Impinging Vortex on the Chamfered Forward Step (모따기된 전향계단에 부딪치는 와류에 의한 비정상 벽면압력 변동)

  • Ryu, Ki-Wahn;Lee, Jun-Shin
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.312-317
    • /
    • 2001
  • Modifying effects of the rectangular forward step for suppressing the unsteady pressure fluctuation during interaction between the upstream vortical flow with the edge are studied numerically. The vortical flow is modeled by a point vortex, and the unsteady pressure coefficient is obtained from the velocity and the potential field. To investigate the effects of the edge shape the rectangular forward step is chamfered with various angles. Calculation show that the pressure peaks become decreased by increasing the vortex height as well as the chamfering angle. The pressure amplitudes are very sensitive to the change of the initial vortex height. From this study we can find out that the chamfered edge has two effects; the one is that it suppresses the pressure amplitude generated from the edge, and the other is that it decreases the time variation of unsteady pressure fluctuation. These modifying concepts can be applied to attenuate the self-sustained oscillation mechanism at the open cavity flow.

  • PDF

Experimental Study on Wall Pressure Fluctuations in the Turbulent Boundary Layer on a Flat-Plate (평판 난류경계층에서의 벽 압력섭동에 대한 실험적 연구)

  • Lee, Seungbae;Kim, Hooi-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.722-733
    • /
    • 1999
  • The wall pressure fluctuations of a turbulent boundary layer over a flat plate have been investigated in an anechoic wind tunnel facility. The anechoic wind tunnel consists of acoustically-lined duct, muffler, and splitter-type silencer for noise suppression and vanes for reducing head losses involved. To improve spectra characteristics in high frequency range, a 1/8" pressure-type microphone sensor, which has a pin-holed cap of various diameters, was employed in this experiment. It was shown that the pin-holed microphone sensor with a dimensionless diameter $d^+$ of 7.1 resolved the high frequency pressure fluctuations most effectively among ones with various pin-hole diameters. The measured wall pressure spectra in terms of three types of scaling parameters were in good agreement with other experimental and numerical results. The pressure events of high amplitude were found to contribute to total fluctuating pressure energies in the turbulent boundary layer significantly and supposed to radiate to the far-field effectively.

Effects of Asymmetric Airway Inertance on Mean Lung Volume During High Frequency Ventilation(HFV)

  • Cha, Eun-Jong
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.203-208
    • /
    • 1990
  • A possible asymmetry in airway inertance was modeled based on previously reported radiographic visualization data of the airway wall fluctuation in intact dogs. Effects of asymmetric Inertance on mean lung volume during high frequency ventilation (HFV) were evaluated in terms of mean inertive pressure drop across the airways. It was found that a negligible inertlve pressure drop was expected ($<1{\;}cmH_20$) in normal subjects, while a sig- nificant rise in mean alveolar pressure compared to mean mouth pressure by approximately $3{\;}cmH_20$ was resulted for about 40% airway fluctuation representing bronchoconstriction state by Histamine induction. These results demonstrate that asymmetric Inertance could lead patients with airway diseases to a significant lung hyperinflation (LHI), and bronchodilation treatment is recommended prior to applying HFV to prevent those patients from a possible barotrauma.

  • PDF

Development of Elliptic Relaxation Model With The Inhomogeneous Correction (비균질 수정을 사용한 타원완화모형 개발)

  • Chun Kun Ho;Choi Young Don;Shin Jong Keun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.815-818
    • /
    • 2002
  • The elliptic relaxation model(ERM) with the inhomogeneous correction intermediate between near wall with and far from the wall. The source of the ERM usually was appled quasi-homogeneous pressure-strain correlation in homogeneous situations. This formulation was easily applied to the linear model or non-linear pressure-strain model. It is observed that the boundary conditions of the relaxation operator dominate the homogeneous pressure-strain model in the near wall region. While looking at high-Reynolds number flows, it was found necessary to modify the effect of the relaxation operator throughout the log region by accounting for gradients of the flatness variable and turbulent length scales. These effects are kinematic blocking of the wall normal velocity fluctuation and pressure reflections from the surface. This model is wall distances and unit vectors which make the model applicable to flows boundary by a complex geometry. Inhomogeneous correction model is computed inertial and non-inertial channel flow These are compared DNS(Kim et at., Kristofffrsen & Andersson) for channel flow. The present model could be predicted well for rotating flows.

  • PDF

Experimental Study of Wall Pressure Fluctuations in the Regions of Flow Transition (천이 경계층 유동의 벽면 변동 압력에 관한 실험적 연구)

  • 홍진숙;전재진;김상윤;신구균
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.4
    • /
    • pp.280-286
    • /
    • 2002
  • It has been long suspected that the transition region may give rise to local pressure fluctuations and radiated sound that are different from those created by the fully-developed turbulent boundary layer at equivalent Reynolds number. Experimental investigation described in this paper concerns the characteristics of pressure fluctuations at the transition. Flush-mounted microphones and hot wires are used to measure the pressure fluctuations and local flow velocities within the boundary layer in the low noise wind tunnel. From this experiment we could observe the spatial and temporal development process of T-S wave using Wigner-Ville method and find the relations between the characteristic frequency of T-S wave and free stream velocity and the boundary layer thickness based on nondimensional pressure spectra scaled on outer variables.

Unsteady Analysis of Impeller-Volute Interaction in Centrifugal Pump

  • Cheah, Kean Wee;Lee, Thong See;Winoto, Sonny H.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.3
    • /
    • pp.349-359
    • /
    • 2011
  • An unsteady numerical analysis has been carried out to study the strong impeller volute interaction of a centrifugal pump with six backward swept blades shrouded impeller. The numerical analysis is done by solving the three-dimensional Reynolds Averaged Navier-Stokes codes with standard k-${\varepsilon}$ two-equations turbulence model and wall regions are modeled with a scalable log-law wall function. The flow within the impeller passage is very smooth and following the curvature of the blade in stream-wise direction. However, the analysis shows that there is a recirculation zone near the leading edge even at design point. When the flow is discharged into volute casing circumferentially from the impeller outlet, the high velocity flow is severely distorted and formed a spiraling vortex flow within the volute casing. A spatial and temporal wake flow core development is captured dynamically and shows how the wake core diffuses. Near volute tongue region, the impeller/volute tongue strong interaction is observed based on the periodically fluctuating pressure at outlet. The results of existing analysis also proved that the pressure fluctuation periodically is due to the position of impeller blade relative to tongue.

The study for the aerodynamic effects of air-shafts in the railway tunnel (철도터널 통풍공의 공기역학적 성능에 대한 연구)

  • Kim, Dong-Hyeon;Kang, Bu-Byoung;Shin, Min-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.341-348
    • /
    • 2001
  • The purpose of present study is to investigate for reducing pressure fluctuations in the case of installing the air-shafts on the side wall of the tunnel with small cross-sectional area on conventional line. Experiments were performed with a 1/61-scale moving model rig for the tunnel of 0.764 km length in the condition of tunnel cross-section area of $28 m^2$. According to the results, the maximum pressure fluctuation is reduced by 45 % for 19 air-shafts. This results have the speed-up effects of about 33.4 km/h for the train running in tunnel.

  • PDF

Combustion Stability Analysis on Hot-firing Test Results of Regenerative Cooling Combustion Chamber (재생냉각 연소기 연소시험의 연소안정성 분석)

  • Ahn, Kyu-Bok;Lim, Byoung-Jik;Lee, Kwang-Jin;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.5
    • /
    • pp.15-20
    • /
    • 2009
  • Hot-firing tests were performed on two 30 tonf-class regenerative cooling combustion chambers, with different injector distribution and wall cooling method. In the paper, the combustion stability test results were analyzed and presented. The pressure fluctuation and stability rating test(SRT) results of the combustion chambers were examined to evaluate combustion stability. The combustion chambers exhibited satisfactory results on combustion stability. The RMS values of the chamber pressure fluctuation were less than 3% of the chamber pressure and the decay time of artificial pressure peaks was measured to be around 10% of the reference decay time. It is interesting that the RMS values of pressure fluctuation in the combustion chamber with film cooling are smaller than those in the chamber with cooling injectors at the periphery row.

Measurement of Surface Pressure Fluctuations on a Rotating Blade Using a Digital Recording Device (Digital Recording Device를 ol용한 회전중인 블레이드 표면의 압력섭동 측정)

  • Yun, Jung-Sik;Kang, Woong;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1119-1129
    • /
    • 2005
  • A new measurement system of wall pressure fluctuations on a rotating machinery, composed of digital recording device, was developed and evaluated. The small-sized digital recording device was attached on the rotating machinery and then was detached for data reduction. In order to obtain the system transfer function of the digital recording system, a dynamic calibration was performed utilizing the signal from a 1/8 inch B&K microphone as input. The time history of the unsteady pressure was then reconstructed from the output of the sensor by using this transfer function. The reconstructed pressure signals showed good agreement with the reference signal in both temporal and spectral sense. This sensor was then used to measure the wall pressure fluctuations on a rotating blade. An array of microphones were installed on the blade in the circumferential and radial directions. Various statistical moments were obtained from the measurement data set. Comparison of these quantities with the existing studies demonstrated satisfactory agreement. These tests give credence to the relevance and reliability of this device for applications in more complicated turbulent rotating machineries.

Investigation of Transonic and Supersonic Flows over an Open Cavity Mounted on Curved Wall (II) - Unsteady Flow Characteristics - (곡면상에 설치된 열린 공동을 지나는 천음속/초음속 유동에 관한 연구 (II) - 비정상 유동의 특성 -)

  • Ye, A Ran;Das, Rarjarshi;Kim, Huey Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.477-483
    • /
    • 2015
  • Investigations into cavity flows have been conducted for noise and vibration problems that arise in cavity systems. Cavity systems have been applied in engineering devices and have undergone rapid development in the aerospace industry. Meanwhile, to the author's best knowledge, the cavity on a curved wall has been seldom studied. The present work is conducted to study the flow physics of a cavity mounted on a curved wall. Numerical analysis is performed to investigate the cavity flow. Two variables of sub- and supersonic cavity flows were considered: the radius of curvature of the curved wall (L/R) and the inlet Mach number. The results show that the uniform vortex generated by the cavity flow on the curved wall stabilize the pressure fluctuation as time passes. As the inlet Mach number increases, the pressure fluctuation amplitude increases. The results obtained from the curved wall are compared with those from a straight wall using Rossiter's formula. The Strouhal number of the curved wall is lower than that of the straight wall. Lower Strouhal numbers have been obtained in the present computational fluid dynamics (CFD) results than in the theoretical results using Rossiter's formula.