• Title/Summary/Keyword: wall frictional angle

Search Result 12, Processing Time 0.025 seconds

An Experimental Study on Passive Earth Pressure of 3-Dimension (3차원 수동토압에 관한 실험적 연구)

  • 김기동;이상덕
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.489-496
    • /
    • 1999
  • The safety of a structure can be improved by applying the three dimensional passive earth pressure. Because the three dimensional passive earth pressure is much larger than the two dimensional passive earth pressure and it is determined by the size(width B and height H) and the wall frictional angle of the resistant wall. Therefore, the three dimensional passive resistance behavior was studied through the model tests in sandy ground, where the size of the resistant wall and the wall frictional angle were varied. The results show that three dimensional passive earth pressure is 1.1∼3.4 times larger than that of the two dimensional value depending on the wall size and the wall friction.

  • PDF

Stability of Railway Bridge Abutment with Earth Pressure and Internal Friction Angle of Backfill (내부마찰각과 토압 산정방법에 따른 철도교대의 안정성 비교 연구)

  • Choi, Chan Yong;Kim, Hun Ki;Yang, Sang Beom;Kim, Byung Il
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.765-776
    • /
    • 2016
  • In this study, a standard section of a railway bridge abutment wall was designed to satisfy the external stability condition in accordance with the design criteria; this design was used to compare and analyze the active earth pressure and to calculate various types of earth pressure acting on the virtual back (wall, plane) according to the frictional angle of the backfill materials. Also, the external stability, member force and construction cost were analyzed according to the frictional angle of the backfill materials using various theories of earth pressure such as Rankine, Coulomb, Trial Wedge, and Improved Trial Wedge. As for the results, it was found that lateral earth pressure at the virtual back plane was higher than at the virtual back wall, and that these values decreased with the increase of the frictional angle of the backfill materials. The increasing of the frictional angle of the backfill materials decreased the active earth pressure (according to Rankine, Coulomb, Trial Wedge, and Improved Trial Wedge results), and the member force as well as the construction cost were reduced.

Pull - out Capacity of Ground Anchor in Weathered Rock (풍화암 지반에 정착된 앵커의 인발저항 특성)

  • 이승환;황의석;이봉열;김학문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.435-442
    • /
    • 2002
  • Fluid Confirmation Tests(FCT) on 1500 ground Anchors install in weathered rock were carried out to investigate upper and lower limit of elastic elongation, frictional resistant of fixed anchor body, mobilized angle between anchor body and soil. All the measured data were analysed and compared with theoretical equations. The frictional angles of diaphragm wall and anchorage system in weathered rock showed nonlinear curve between upper and lower limit of standard elongation. The FCT results indicated that the frictional resistant angles increased with higher values of surcharge load. The quality assurance on the fixed anchor location was investigated by means of measuring elastic elongation during the FCT, and comparing these with theoretical design length, the quality of anchors in this particular site found to be above average standard. The results of this research works with provide valuable guide line on quality assurance of anchors system as well as resonable prediction of friction resistance between the fixed anchor body and the weathered rock.

  • PDF

Reliability analysis of a mechanically stabilized earth wall using the surface response methodology optimized by a genetic algorithm

  • Hamrouni, Adam;Dias, Daniel;Sbartai, Badreddine
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.937-945
    • /
    • 2018
  • A probabilistic study of a reinforced earth wall in a frictional soil using the surface response methodology (RSM) is presented. A deterministic model based on numerical simulations is used (Abdelouhab et al. 2011, 2012b) and the serviceability limit state (SLS) is considered in the analysis. The model computes the maximum horizontal displacement of the wall. The response surface methodology is utilized for the assessment of the Hasofer-Lind reliability index and is optimized by the use of a genetic algorithm. The soil friction angle and the unit weight are considered as random variables while studying the SLS. The assumption of non-normal distribution for the random variables has an important effect on the reliability index for the practical range of values of the wall horizontal displacement.

Dynamic Behavior Analysis of Reciprocating Compressor Pistons (왕복동형 압축기 피스톤의 동적 거동 해석)

  • 김태종
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.717-724
    • /
    • 2002
  • In this study, a numerical analysis for the piston secondary dynamics of small refrigeration reciprocating compressors is performed. In general, the length of cylinder in this class of compressors is shortened to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder wall is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the piston dynamics, the change in bearing length of the piston and all corresponding forces and moments are considered in order to determine the piston trajectory, velocity and acceleration at each step. A Newton-Raphson procedure was employed in solving the secondary dynamic equations of the piston. The developed computer program can be used to calculate the entire piston trajectory and the hydrodynamic force and moment as functions of crank angle under compressor running conditions. The results explored the effects of the radial clearance, lubricant viscosity, length of the cylinder wall, and pin location on the stability of the piston.

Numerical Analysis of the Piston Secondary Dynamics in Reciprocating Compressors

  • Kim, Tae-Jong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.350-356
    • /
    • 2003
  • In this study, a numerical analysis for the piston secondary dynamics of small refrigeration reciprocating compressors is performed. In general, the length of cylinder in this class of compressors is shortened to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder wall is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the piston dynamics, the variation in bearing length of the piston and all corresponding forces and moments are considered in order to determine the piston trajectory, velocity and acceleration at each step. A Newton-Raphson procedure was employed in solving the secondary dynamic equations of the piston. The developed computer program can be used to calculate the entire piston trajectory and the lubrication characteristics as functions of crank angle under compressor running conditions. The results explored the effects of some design parameters and operating conditions on the stability of the piston, the oil leakage, and friction tosses.

Analysis of the Dynamic Behavior and Lubrication Characteristics of the Piston-Cylinder System in Reciprocating Compressors (왕복동형 압축기 피스톤-실린더계의 동적 거동 및 윤활특성 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.291-298
    • /
    • 2002
  • In this study, a numerical analysis f3r the piston secondary dynamics and lubrication characteristics of small refrigeration reciprocating compressors is presented. In general, the length of cylinder in this class of compressors is shortened to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder wall is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the piston dynamics, the change in bearing length of the piston and all corresponding forces and moments are considered in order to determine the piston trajectory, velocity and acceleration at each step. A Newton-Raphson procedure was employed in solving the secondary dynamic equations of the piston. The developed computer program can be used to calculate the entire piston trajectory and the hydrodynamic forces and moments as functions of crank angle under compressor running conditions. The results explored the effects of the radial clearance, lubricant viscosity, and pin location on the stability of the piston, the oil leakage, and friction losses.

Development and Uncertainty Assessment of Interface Friction Prediction Equation Between Steel Surface and Cohesionless Soils (강재면과 사질토 사이의 경계면 마찰각 예측식 개발 및 불확실성 평가)

  • Lee, Kicheol;Kim, So-Yeun;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.2
    • /
    • pp.33-40
    • /
    • 2018
  • Characteristics of interface friction between cohesionless soils and geotechnical structure surfaces play an important role in the analysis of earth load and resistance on the structure. In general, geotechnical structures are mainly composed of either steel or concrete, and their surface roughnesses with respect to soil particle sizes influence the interface characteristics between soils and the structures. Accurate assessment of the interface friction characteristics between soils and structures is important to ensure the safety of geotechnical structures, such as mechanically stabilized earth walls reinforced with inextensible reinforcements, piles embedded into soils, retaining wall backfilled with soils. In this study, based on the database of high quality interface friction tests between frictional soils and solid surfaces from literature, equation representing peak interface friction angle is proposed. The influential factors of the peak interface friction angle are relative roughness between soil and solid surface, relative density of frictional soil, and residual (constant volume) interface friction angle. Futhermore, for the developed equation of the interface friction angle, its uncertainty was assessed statistically based on Goodness-of-fit test results.

Dynamic Analysis of a Reciprocating Compression Mechanism Considering Hydrodynamic Forces

  • Kim, Tae-Jong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.844-853
    • /
    • 2003
  • In this paper, a dynamic analysis of the reciprocating compression mechanism of a small refrigeration compressor is performed. In the problem formulation of the mechanism dynamics, the viscous frictional force between the piston and the cylinder wall is considered in order to determine the coupled dynamic behaviors of the piston and the crankshaft. Simultaneous solutions are obtained for the equations of motion of the reciprocating mechanism and the time-dependent Reynolds equations for the lubricating film between the piston and the cylinder wall and for the oil films on the journal bearings. The hydrodynamic forces of the journal bearings are calculated by using a finite bearing model along with the Gumbel boundary condition. A Newton-Raphson procedure is employed in solving the nonlinear equations for the piston and crankshaft. The developed computer program can be used to calculate the complete trajectories of the piston and the crankshaft as functions of the crank angle under compressor-running conditions. The results explored the effects of the radial clearance of the piston, oil viscosity, and mass and mass moment of inertia of the piston and connecting rod on the stability of the compression mechanism.

Tailings Behavior and Performance of the Tailings Return Unit of the Head-feed Combine(II) -Theoretical and Experimental Analysis of Tailing Behavior- (자탈형(自脫型) 콤바인 환원장치(還元裝置)의 환원물(還元物) 유동현상(流動現象)과 환원성능(還元性能) 개선(改善)에 관한 연구(硏究)(II) -환원물(還元物) 유동(流動)의 이론해석(理論解析)과 실험분석(實驗分析)-)

  • Cho, Y.K.;Chung, C.J.;Choi, K.H.;Park, P.K.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.2
    • /
    • pp.133-141
    • /
    • 1991
  • This study was undertaken to investigate the structural and configurational characteristics of the tailings return-unit in the commercially available head-feed combines and to study the aero-dynamical behavior of the tailings in the units. The mathematical model of the motion of tailings in the thrower casing was developed and the simulated trajectories for different type of units was analyzed to compare with the measured ones. The air-stream velocity profile in various locations along the tailings returning duct was measured to find the effect of configurational characteristics and blade tip speed. The results of the study are summerized as follows. 1. The ejecting angle, which is the angle between the direction of the particle velocity ejecting from the blade and the horizontal axis, was found to be about $66^{\circ}$ in both the simulation and experiment. The angle was much greater than the setting angle of actual duct of the combines studied, which were $48{\sim}56^{\circ}$. By comparison of these results, it was suggested to change duct setting angle so as to reduce the frictional force, between the duct wall and tailings, by reducing the difference between the ejecting and setting angles. 2. The velocity of the air stream in the duct was in general higher in the upper bound of the duct compared to the lower and decreased as the stream went toward the end of duct. The comparison of the tailings units among the combines studied showed a superior performance with the tapered duct having small diameter in the outlet and with greater number of thrower blade.

  • PDF