• Title/Summary/Keyword: walking time

Search Result 968, Processing Time 0.023 seconds

Modeling of Dynamic Loads Due to Pedestrian Walking

  • Kim, Gee-Cheol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.1 s.15
    • /
    • pp.81-89
    • /
    • 2005
  • Walking loads are influenced by various parameters so that they need to be measured considering such parameters. Walking frequency(rate) is experimentally investigated as the most important parameter in determining the walking load expressed with dynamic load factor. This study focuses on the derivation of continuous walking load-time functions at any walking frequency ranging from 1.30Hz to 2.70Hz. Experiments were conducted to obtain time-histories of walking loads at the increment of 0.1Hz, which are decomposed into harmonic loads by the Fourier transformation. The polynomial load-time functions are proposed representing the relationship between harmonic coefficients and walking frequencies, thereby easily formulating walking load-time histories for dynamic load factor with various walking frequencies.

  • PDF

Correlation of Curved Walking Ability with Straight Walking Ability and Motor Function in Patients with Hemiplegia

  • Lim, Jae-Heon;Park, Jang-Sung;Seo, Sam-Ki
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.3
    • /
    • pp.13-19
    • /
    • 2011
  • Purpose: In real life there are both straight-paths and curved-paths. To evaluate walking ability of both kinds, a figure-8 walking test (F8WT) was developed. The aim of this study was to validate the measure in hemiplegic patients with walking difficulties and to identify correlations of curved walking ability with straight walking ability, motor function, and walking performance ability. Methods: Twenty subjects participated in this study. Curved walking was measured by a F8WT. Straight walking ability was measured by a 10-meter walking test (10MWT). Dynamic balancea bility was measured by timed up and go (TUG) tests. Walking performance ability was measured using a modified motor assessment scale (MMAS). Motor function was measured by the Fugl-Meyer assessment (FMA) scale. Data were analyzed using Pearson correlation analysis. Linear regression analyses were performed to explore other functional tests in mobility ability by F8WT time, 10MWT (dependent variable). Results: There was a significant positive correlation of F8WT time with 10MWT and TUG. There was a significant negative correlation of F8WT time with MMAS and FMA-coordination. There was a significant positive correlation of 10MWT with TUG. There was a significant negative correlation of 10MWT with MMAS and FMA-coordination. The F8WT time for curved walking ability was attributed to 10MWT for straight walking ability as 94% level of contribution. Conclusion: The results suggest that the F8WT is a good instrument for measuring walking ability because there is a robust correlation of F8WT time with 10MWT, TUG, MMAS, and FMA-coordination in hemiplegic patients who, after stroke, have a mobility deficiency.

Characteristics of Spatio-Temporal Parameters in Parkinson's Disese During Walking (보행 시 파킨슨병 환자의 시·공간적 지표의 특성)

  • Lee, Sung-Yong;Woo, Young-Keun;Shin, Seung-Sub;Jung, Seok
    • Physical Therapy Korea
    • /
    • v.15 no.3
    • /
    • pp.35-43
    • /
    • 2008
  • The purpose of this study was to compare spatio-temporal parameters during walking between patients with idiopathic Parkinson's disease and a control group matched for age, height, and weight. Thirty-three subjects were included in this study. Fifteen normal subjects (age, $63.3{\pm}5.8$ yrs; height, $164.1{\pm}8.7$ cm; weight, $60.7{\pm}17.5$ kg) and eighteen patients (age, $64.0{\pm}7.7$ yrs; height, $164.7{\pm}7.3$ cm; weight, $63.6{\pm}7.7$ kg) participated in the study. The Vicon 512 Motion analysis system was used for gait analysis in each group during walking, with and without an obstacle. The measured spatio-temporal parameters were cadence, walking speed, stride time, step time, single limb support time, double limb support time, stride length, and step length. Results in stride length and step length, when walking without an obstacle, showed a significantly greater decrease in the patient group compared to the control group. During walking with an obstacle, the patient group showed a significantly greater decrease in the step length as compared to the control group. For the control group, there were significant decreases in parameters of cadence and walking speed and increases in parameters of stride time, step time, and single limb support time when walking with an obstacle. The patient group had lower cadence and walking speed and higher stride time, step time, and single limb support time during walking with an obstacle than in walking without an obstacle. These results suggest that patients with Parkinson's disease who walk over an obstacle can decrease cadence, stride length, and step length. Further study is needed, performed with more obstacles and combined with other external cues, such as visual or acoustic guides.

  • PDF

Correlation Between Executive Function and Walk While Crossing Over an Obstacle Under Different Gait Phases

  • Seung Min Lee;Han Suk Lee
    • Dementia and Neurocognitive Disorders
    • /
    • v.22 no.4
    • /
    • pp.139-147
    • /
    • 2023
  • Background and Purpose: Dual walking task such as crossing over an obstacle may serve as an excellent tool for predicting early cognitive decline. Thus, this study aimed to investigate correlation between walking while crossing over an obstacle and executive functions under different gait phases to validate the use of walking with an obstacle for predicting early cognitive decline. Methods: A cross-sectional study was conducted on 48 elderly individuals from 2 day-care centers and 3 welfare-centers in Seoul and Gyeonggi, Korea. Executive function tests (Trail Making Test, Stroop test) and dual walking tests (gait speed, cadence, stance time, gait cycle time) were performed and compared using partial correlation analysis. Results: There were significant correlations between executive function and most of the gait variables (stance time, cadence, and gait cycle time) (p<0.05) when crossing over an obstacle while walking. Especially, stance time exhibited significant correlations with most executive functions (p<0.05). Conclusions: When evaluating executive function during walking with an obstacle, post-obstacle-crossing phase and stance time need to be observed.

Impact of a Media-Campaign to Promote Walking on Awareness & Behavior Change (지역사회 걷기 활성화를 위한 매체-캠페인이 걷기관련 인식과 행태변화에 미치는 영향)

  • Ann, Eue-Soo;Lee, Yong-Soo
    • Korean Journal of Health Education and Promotion
    • /
    • v.24 no.4
    • /
    • pp.99-114
    • /
    • 2007
  • Object: To analyze the effect of a media-campaign for "walking exercise participation improvement", which impacted walking-related awareness and behavior change of residents in Seoul. Method: This study used three campaign media including printing information, walking exercise indication board and a public advertisement of cable TV to lead a walking-related awareness change and practice frequency(number of days per week walking) and time(minutes per day walking) of walking exercise. To evaluate the exposure and message-recall levels of a campaign and effects of awareness change and walking practice, this study used a questionnaire survey(N=377). Result: 1) Group of exposure to campaign more participate and had the higher frequency(p=.015) and time(p=.023) in walking exercise and in comparison with group of nonexposure. 2) Group of changed awareness to campaign more participate and had the higher frequency and time in walking exercise and in comparison with group of no changed perception(p <.05). 3) Level of message recall of ${\ulcorner}$printing information${\lrcorner}$ was associated with number of days per week walking, and level of message recall of ${\ulcorner}$public advertisement of cable TV${\lrcorner}$ was associated with minutes per day walking at a statistically significant level(p <.05). Conclusion: These results suggest that media campaign can enhance the success of community-based efforts to promote awareness change and walking practice.

Design and Implementation of Walking Status Analysis System based on Multi-Sensors

  • Seo, Kwi-Bin;Lee, Seung-Hyun;Hong, Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.159-166
    • /
    • 2019
  • Recently, the advanced development of smart devices has increased the interest in health-care, and many people are paying more attentions to disease prevention than disease treatment. Among these prevention methods, the bare body movement has received much attention, and especially walking exercise is attracting much attention because it is enjoyable without any restrictions on place and time. Walking exercise is generally divided into two types: walking on the ground and climbing the stairs. Walking up the stairs consumes much more calories compared to walking on the ground. These walking exercises have the advantage that they can be easily performed by male and female without special equipments or economic considerations. However, there is a lack of applications and systems that accurately determine such walking and stair walking and measure momentum according to stair walking. In this paper, we designed and implemented a real-time walking status analysis system using smartwatch's, pedometer, smartphone's barometer and beacons.

Estimation of the Marginal Walking Time of Bus Users in Small-Medium Cities (중·소도시 버스이용자의 한계도보시간 추정)

  • Kim, Kyung Whan;Yoo, Hwan Hee;Lee, Sang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.451-457
    • /
    • 2008
  • Establishing realistic bus service coverage is needed to build optimum city bus line networks and reasonable bus service coverage areas. The purposes of this study are understanding the characteristics of the present walking time and marginal walking time of small-medium cities and constructing an ANFIS (Adaptive Neuro-Fuzzy Inference System) model to estimate the marginal walking time for certain age and income. The cities of Masan, Chongwon and Jinju are selected for study cities. The 80 percentile of present walking time of bus users of these cities are 10.2-11.1 minutes, thus the values are greater than the 5 minutes of the maximum walking time in USA and the marginal walking times of 21.1-21.8 minutes are much greater. An ANFIS model based on pulled data of the cities are constructed to estimate the marginal walking time of small-medium cities. Analyzing the relationship between marginal walking time and age/income by using the model, the marginal walking time decreases as the age increases, but is near constant from the age of 25 to 35. And the marginal walking time is inversely proportional to the income. In comparing the surveyed and the estimated values, as the statistics of coefficient of determination, MSE and MAE are 0.996, 0.163, 0.333 respectively, it may be judged that the explainability of the model is very high. The technique developed in this study can be applied to other cities.

The Effect of Backward Walking Training Methods on Walking in Stroke Patients

  • im, Sang-Jin;Jeon, Chun-Bae;Kim, Chung-Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.3
    • /
    • pp.21-27
    • /
    • 2011
  • Purpose: The purpose of the present study was to examine, in stroke patients, differences between backward walking training applied on a treadmill and the same training applied on the ground. Methods: Twenty seven stroke patients were divided into a treadmill backward walking group of 14 patients and a ground backward walking group of 13 subjects. Each group performed their respective training method for 8 weeks (15 min per day, 4 days a week). Walking ability was measured using a 10 m MWS (Maximal Walking Speed) test and the GAITRite system to examine changes in walking. Cadence, stridelength, step time, step length and symmetry index of the less affected side were measured to examine changes in stance phase of the lower extremity of the more affected side. Results: 10 m MWS, cadence, stride length, step time and step length of the less affected side significantly increased and symmetry index significantly decreased after training in both groups. The treadmill backward walking group experienced a significantly greater increase in step time and step length and a significantly greater decrease in symmetry index than the ground backward walking group. Conclusion: The two walking training methods were effective for improving stability in stance phase of the lower extremity of the more affected side, but the treadmill method was more effective. The present study is meaningful in that it analyzed the effects of backward walking training methods on walking and the differences of the training methods to provide information necessary for effective treatment of stroke patients.

Effects of Unilateral Step Treadmill Training on the Gait Speed and Recovery of Gait Symmetry in Patients with Chronic Stroke (편측성 걸음걸이 트레드밀 훈련이 만성 뇌졸중 환자의 보행 속도와 대칭성 회복에 미치는 효과)

  • Lee, Ji-Yeon;Chon, Seung-Chul
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.4
    • /
    • pp.145-151
    • /
    • 2022
  • Purpose : Stroke patients exhibit abnormal walking patterns such as slow walking speed and asymmetrical walking values. The recovery of symmetrical walking in the stance phase using a treadmill means improvements in walking speed and asymmetrical walking. The purpose of this research was to investigate the effect of unilateral step treadmill training (USTT) on gait speed and the recovery of symmetrical walking in chronic stroke patients. Methods : Fifteen patients (11 men and 4 women) with chronic stroke participated in this study. The 10-meter walk test (10MWT) and GAITRite system were used to determine the intervention-related changes in gait speed and symmetrical walking values such as non-paretic step length (NSL), non-paretic step time (NST), paretic single-support time (PSST), step length asymmetry (SLA), and step time asymmetry (STA) after USTT. All participants completed USTT and underwent measurements at 3 different times: at pretest, posttest, and the follow-up test. Repeated-measures analysis of variance was used to compare walking speed and asymmetrical walking values. The statistical significance level was set at p<.05. Results : Walking speed by 10MWT (p<.05) showed significant improvements after USTT as follows: at pretest and posttest (p<.05), posttest and follow-up test (p<.05), and pretest and follow-up test (p<.05). Recovery of symmetrical walking patterns such as NSL (p<.05), NST (p<.05), and SLA (p<.05) were observed after USTT. However, no significant improvements were found in PSST (p>.05) and STA (p>.05) in symmetrical gait. Conclusion : This study suggests that USTT may have a positive effect on walking speed and symmetrical walking patterns in chronic stroke patients. Thus, this study contributes to the existing knowledge about the usefulness of USTT for the effective management of patients with chronic stroke. Further studies are needed to generalize these findings.

A Study on Pedestrian Priority Actuated Signal Control Considering Waiting Time for Walking and Pedestrian Stress (보행대기시간과 보행자스트레스를 고려한 보행자우선 감응신호 운영방안 연구)

  • Choi, Bongsoo;Nam, Doohee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.18-29
    • /
    • 2022
  • Since the operation of an reft-turn actuated signal driven mainly by vehicles may increase the waiting time for walking, this signal causes inconvenience or stress to pedestrians. Therefore, in this study, the change in waiting time for walking before and after the application of an reft-turn actuated signal and the stress on the pedestrians were investigated through a questionnaire. The investigation showed that the waiting time for walking increased by 37% during non-peak time. Also the waiting time for walking of 62.1% of pedestrians became longer and 78% of them were stressed because of it. Meanwhile, simulation(VISSIM) showed that the vehicle travel speed slightly decreased to 1.07km/h(a 2.5% decrease), and the average waiting time for walking decreased by 15.51sec(a 28% decrease) with a pedestrian priority actuated signal. Therefore, it is expected that the pedestrian priority actuated signal can reduce the waiting time for walking and relieve pedestrian stress.