• Title/Summary/Keyword: walking load

Search Result 120, Processing Time 0.028 seconds

The Damage Behavior of Glass/Epoxy and Aramid/Epoxy in Leaf Spring of Ankle Foot Orthosis (A.F.O) due to the Various Impact Velocities (족부보장구(A.F.O.) 판스프링용 Glass/Epoxy와 Aramid/Epoxy의 충격속도 변화에 따른 손상 거동)

  • Song Sam-Hong;Oh Dong-Joon;Jung Hoon-Hee;Kim Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1526-1533
    • /
    • 2004
  • The needs of walking assistant device such as the Ankle Foot Orthosis (A.F.O) are getting greater than before. However, most of the A.F.O are generally imported rather than domestic manufacturing. The major reason of high import reliability is the rack of impact properties of domestic commercial products. Therefore, this research is going to focus on the evaluation of impact properties of the A.F.O which has the high import reliability. Unfortunately, these kinds of researches are not performed sufficiently. This research is going to evaluate impact energy behavior in composite materials such as the glass/epoxy (S-glass, [0/90]sub 2S/) and the aramid/epoxy (Kevlar-29, woven type, 8 ply) of ankle foot orthosis. The approach methods were as follows. 1) The history of impact load and impact energy due to the various velocities. 2) Relationship between the deflection and damage shape according to the impact velocities. 3) The behavior of absorbed energy and residual strength rate due to the various impact velocities.

Study on the Small Sized Robots Actuator using Piezoelectric Ceramic Bender (압전세라믹 벤더를 이용한 소형로봇용 구동원에 관한 연구)

  • Park, Jong-Man;Song, Chi-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.337-343
    • /
    • 2020
  • This study proposed piezoelectric ceramic bender actuators for application to small walking robots. As the space where human access has recently become increasingly restricted (e.g., highly concentrated radioactive storage areas, viral contaminated areas, terrorist zones, etc.), the scope of using robots is becoming more diverse, and many actions that were possible only in the past have been attempted to be replaced by small robots. This robotic concept has the advantage of being simple in structure, making it compact and producing a large size work force. The dynamic modeling, using finite element analysis, maximized the robot's mobility performance by optimizing the shape of the actuator, and the results were verified through fabrication and experimentation. The actuator moved at a maximum speed of 236 mm/s under no load conditions, and it could move at a speed of 156 mm/s under load conditions of 5g. The proposed actuator has the advantage of modular additions depending on the mission and required performance, which ensured that they are competitive against similar drive sources previously created.

Evaluation on the Vibration Performance for Void-deck Slab Combined with Deck Plate and Polystyrene Void Foam (데크플레이트와 경량성형재가 결합된 중공슬래브의 진동성능에 대한 실물실험 평가)

  • Cho, Seung-Ho;Roh, Young-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.86-92
    • /
    • 2017
  • The possibility to development of floor vibration problem is larger in case of long span structure under service loads. Therefore, to improve the vibration performance of the floor, increasing of its thickness is a common method. But, increasing of thickness can lead to increase of slab self weight and reduce the effectiveness of the building. For this reason, attention for voided slab which reduces the self-weight is increasing. Hence, voided deck slab combined with deck plate and polystyrene void foam which has buoyancy prevention capacity and much developed construct ability has bee developed. By using the developed voided slab, vibration performance of a mock-up building structure has been investigated in the current study. The results according to analysis showed that they can be implemented in living and bedroom which are considered as 1st grade on the basis of "Residential Evaluation Guidelines for Vibration of Buildings" by the Architectural Institute of Japan.

A study on Development of Actuator for Biped Walking Robot (직립보행로봇 Actuator 개발에 관한 연구)

  • Moon, Jin-Soo;Kim, Cheul-U
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.7
    • /
    • pp.73-80
    • /
    • 2005
  • Biped robot requires that an energy source and a control part should be installed on the body to realize active system. So, we choose the DC motor having high torque in compact size in this study. In the DC motor serve system, we choose power amplifier with analog configuration, developed the module combined the controller and the driver. We applied this module to robot actuator and studied the response characteristics in an action and a return. Main controller with serve system, loading PIC micro controller, can be load on the robot with light weight.

Implementation of network architecture for a humanoid robot (휴머노이드 로봇의 네트워크 구조 구현)

  • Sung, Yu-Kyoung;Kong, Jung-Shik;Lee, Bo-Hee;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2397-2399
    • /
    • 2004
  • This paper deals with the messages scheduling of a CAN (Controller Area Network), based on the distributed control scheme to integrate actuators and sensors in a humanoid robot. In order to supply the distributed processing for a humanoid robot, each control unit should have the efficient control method, fast calculation and valid data exchange. The preliminary study has concluded that the performance of CAN is better and easier to implement than other network such as FIP (Factory Instrumentation Protocol), VAN (Vehicle Area Network), etc. Since humanoid robot has to treat the significant control signals from many actuators and sensors, the communication time limitation could be critical according to the transmission speed and data length of CAN specification. In this paper, the CAN message scheduling in humanoid robot was suggested under the presence of Jitter in the message group, the existence of high load of messages over the network and the presence of transmission errors. In addition, the response time under the worst case is compared with the simulation by using the simulation algorithm. As a result, the suggested messages scheduling can guarantee our CAN limitation, and utilized to generate the walking patterns for the humanoid.

  • PDF

Estimation of Vibration Plate due to Moving Oscillator in Reinforcement Concrete (이동 가진원에 따른 철근 콘크리트 판에서의 진동평가)

  • Kim, Ie-Sung;Yoon, Seoung-Hyun;Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.83-90
    • /
    • 2007
  • Today, many studies are progressed about source of vibration oscillator in reinforcement concrete structures. Source of vibration oscillator is load when it is happen from walking inhabitant. It is transmitted to another inhabitant through reinforcement concrete plate, and it is type of elastic wave. Those descriptions are ram wave and primary wave, secondary wave, and the are through the surface and inside plate. Analysis studies of those waves are used to piezoelectric materials. But, they are difficult to 3 axial type of transmitting elastic wave in concrete element. In this study, a fundamental study for source estimations of vibration oscillator using micro accelerometer are discussed.

  • PDF

Virtual Sensor Verification Using Neural Network Theory of the Quadruped Robot (보행로봇의 신경망 이론을 이용한 가상센서 검증)

  • Ko, Kwang-Jin;Kim, Wan-Soo;Yu, Seung-Nam;Han, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1326-1331
    • /
    • 2009
  • The sensor data measured by the legged robot are used to recognize the physical environment or information that controls the robot's posture. Therefore, a robot's ambulation can be advanced with the use of such sensing information. For the precise control of a robot, highly accurate sensor data are required, but most sensors are expensive and are exposed to excessive load operation in the field. The seriousness of these problems will be seen if the prototype's practicality and mass productivity, which are closely related to the unit cost of production and maintenance, will be considered. In this paper, the use of a virtual sensor technology was suggested to address the aforementioned problems, and various ways of applying the theory to a walking robot obtained through training with an actual sensor, and of various hardware information, were presented. Finally, the possibility of the replacement of the ground reaction force sensor of legged robot was verified.

Effects of Differents types of Clothing and Colours on Clothing Microclimate in the Subjects wearing Sports Wear under Sunlight (일광하에서 운동시의 스포츠웨어 색상과 의복형태가 의복기후에 미치는 영향)

  • Kim, Tae-Kyu
    • Fashion & Textile Research Journal
    • /
    • v.3 no.3
    • /
    • pp.271-276
    • /
    • 2001
  • In this study, We endeavored to revaluate the effects of different types of clothing and colors on clothing microclimate in the subjects wearing sports wear at sunlight environment. This study was conducted 4 different kinds (cotton 100%) of clothing ensembles, that was W-1(long trousers and shirt of white color), B-1 (long trousers and shirt of black color), W-s (short trousers and shirt white color), B-s (short trousers and shirt black color) and were done in a climate chamber under sunlight ambient temperature ($33.67{\pm}1.8^{\circ}C$, $46.0{\pm}8.5%RH$) by three males subject who are in good healthy. Start a 20-min rest period, 20-min bouts of exercise and final 20-min recovery period were performed. The kinetic load was given for 20 minutes under the condition of 6.0 km/hr walking speed on the treadmill. The results is as followed In case of same type of garment, temperature within clothing which is based on difference of color the white ensemble keeps higher temperature than black one. According to distribution chart of temperature within clothing in case of chest, white one shows higher temperature than black one, in case of back, black one shows higher temperature than white one. Difference of heart rate was so clear and sequence is W-1>B-1>W-s>B-s, so we could find same tendency with temperature within clothing.

  • PDF

Fracture behavior modeling of a 3D crack emanated from bony inclusion in the cement PMMA of total hip replacement

  • Mohamed, Cherfi;Abderahmane, Sahli;Benbarek, Smail
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.37-43
    • /
    • 2018
  • In orthopedic surgery and in particular in total hip arthroplasty, the implant fixation is carried out using a surgical cement called polymethylmethacrylat (PMMA). This cement has to insure a good adhesion between implant and bone and a good load distribution to the bone. By its fragile nature, the cement can easily break when it is subjected to a high stress gradient by presenting a craze zone in the vicinity of inclusion. The focus of this study is to analyze the effect of inclusion in some zone of cement in which the loading condition can lead to the crack opening leading to their propagation and consequently the aseptic loosening of the THR. In this study, the fracture behavior of the bone cement including a strange body (bone remain) from which the onset of a crack is supposed. The effect of loading condition, the geometry, the presence of both crack and inclusion on the stress distribution and the fracture behavior of the cement. Results show that the highest stresses are located around the sharp tip of bony inclusion. Most critical cracks are located in the middle of the cement mantle when they are subjected to one leg standing state loading during walking.

Free Flap Reconstruction in Patients with Traumatic Injury of the Forefoot

  • Kang, Shin Hyuk;Oh, Jeongseok;Eun, Seok Chan
    • Journal of Trauma and Injury
    • /
    • v.32 no.3
    • /
    • pp.187-193
    • /
    • 2019
  • Many techniques have been developed for reconstruction of the hand; however, less attention has been paid to foot reconstruction techniques. In particular, reconstruction of the forefoot and big toe has been considered a minor procedure despite the importance of these body parts for standing and walking. Most of the weight load on the foot is concentrated on the forefoot and big toe, whereas the other toes have a minor role in weight bearing. Moreover, the forefoot and big toe are important for maintaining balance and supporting the body when changing directions. Recently, attention has been focused on the aesthetic appearance and functional aspects of the body, which are important considerations in the field of reconstructive surgery. In patients for whom flap reconstruction in the forefoot and big toe is planned, clinicians should pay close attention to flap survival as well as functional and cosmetic outcomes of surgery. In particular, it is important to assess the ability of the flap to withstand functional weight bearing and maintain sufficient durability under shearing force. Recovery of protective sensation in the forefoot area can reduce the risk of flap loss and promote rapid rehabilitation and functional recovery. Here, we report our experience with two cases of successful reconstruction of the forefoot and big toe with a sensate anterolateral thigh flap, with a review of the relevant literature.