• 제목/요약/키워드: wake separation

검색결과 147건 처리시간 0.025초

진동하는 NACA 4412 에어포일 근접후류에서의 레이놀즈수 효과 1: 평균속도장 (Reynolds Number Effects on the Near-Wake of an Oscillating Naca 4412 Airfoil, Part 1 : Mean Velocity Field)

  • 장조원
    • 한국항공우주학회지
    • /
    • 제31권7호
    • /
    • pp.15-25
    • /
    • 2003
  • 진동하는 에어포일의 근접후류 특성을 조사하기 위한 실험적 연구가 수행되었다. NACA 4412에어포일은 1/4 시위 지점을 중심으로 조화적으로 피칭운동을 하고, 순간받음각이 +6$^{\circ}$에서 -6$^{\circ}$까지 진동하도록 하였다. 진동하는 에어포일의 근접후류에서의 평균속도를 측정하기 위하여 열선풍속계를 사용하였다. 본 연구에서 자유류의 속도는 3.4, 12.4, 26.2 m/s이다. 이러한 자유류 속도에 따른 시위 레이놀즈수는 $R_N$=5.3${\times}10^4$, 1.9${\times}10^5$, 4.1${\times}10^5$이고, 무차원 진동수는 K=0.1이다. 레이놀즈수가 진동하는 에어포일의 근접후류에 미치는 영향을 나타내기 위하여 축방향 위상평균 속도분포를 제시하였다. 본 측정에서 모든 경우에 속도결손은 $R_N$=5.3${\times}10^4$인 경우에 아주 크고, $R_N$=1.9${\times}10^5$과 4.1${\times}10^5$인 경우에는 작다는 것을 관찰 할 수 있었다. 이와 같이 위상평균속도의 커다란 차이는 $R_N$=5.3${\times}10^4$과 1.9${\times}10^5$ 사이에 있다는 것을 관찰하였다. 따라서 본 연구는 진동하는 에어포일의 근접후류에서의 레이놀즈수의 임계값이 5.3${\times}10^4$에서 1.9${\times}10^5$ 범위에 존재한다는 것을 보여준다.

진동하는 타원형 에어포일의 근접후류 특성 연구 (An Experimental Study of the Near-Wake Characteristics of an Oscillating Elliptic Airfoil)

  • 장조원;손명환;은희봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1795-1800
    • /
    • 2003
  • An experimental study was carried out to investigate near-wake characteristics of an elliptic airfoil oscillating in pitch. The airfoil was sinusoidally pitched about the half chord point between $-5^{\circ}C$ and $+25^{\circ}C$ angles of attack at the freestream velocities of 3.4 and 23.1 m/s The corresponding Reynolds numbers based on the chord length were $3.3{\times}10^4$ and $2.2{\times}10^5$, respectively. A hot-wire anemometer was used to measure the near-wake flow variable at the reduced frequency of 0.1. Ensemble-averaged velocity and turbulence intensity profile were presented to examine the near-wake characteristics depending on the Reynolds number. The axial velocity deficit in the near-wake region tend to decrease with the increase in the Reynolds number a found in many stationary airfoil test . Turbulence intensity in the near-wake region have a tendency to decrease with the increase in the Reynolds number during the pitch-up motion, whereas it shows different feature during the pitch-down motion either the laminar boundary layer or turbulent boundary layer separation.

  • PDF

진동하는 타원형 에어포일의 근접후류 특성 연구 (An Experimental Study of the Near-Wake Characteristics of an Oscillating Elliptic Airfoil)

  • 장조원;손명환;은희봉
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.334-346
    • /
    • 2003
  • An experimental study was carried out to investigate near-wake characteristics of an elliptic airfoil oscillating in pitch. The airfoil was sinusoidally pitched about the half chord point between -5$^{\circ}$and +25$^{\circ}$angles of attack at the freestream velocities of 3.4 and 23.1 m/s. The corresponding Reynolds numbers based on the chord length were 3.3$\times$10$_{4}$ and 2.2$\times$10$^{5}$ , respectively. A hot-wire anemometer was used to measure the near-wake flow variables at the reduced frequency of 0.1. Ensemble-averaged velocity and turbulence intensity profiles were presented to examine the near-wake characteristics depending on the Reynolds number. The axial velocity deficit in the near-wake region tends to decrease with the increase in the Reynolds number as found in many stationary airfoil tests. Turbulence intensity in the near-wake region have a tendency to decrease with the -increase in the Reynolds number during the pitch-up motion, whereas it shows different feature during the pitch-down motion according to the separation characteristics.

구(球) 주위 난류유동의 정량적 가시화 (Flow Visualization of Turbulent Flow around a Sphere)

  • 장영일;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.50-53
    • /
    • 2005
  • The turbulent flow around a sphere was investigated in a streamwise meridian plane using two experimental techniques: smoke-wire flow visualization in wind tunnel at Re=5,300 and PIV measurements in a circulating water channel at Re=7,400. The smoke-wire visualization shows flow separation points near an azimuthal angle of $90^{\circ}$, recirculating flow, transition from laminar to turbulent shear layer, evolving vortex roll-up and fully turbulent eddies in the sphere wake. In addition, the mean flow pattern extracted by particle tracing method in water tunnel at Re= 14,500 reveals two distinct comparable toroidal(not closed) vortices in the recirculation region. The mean velocity field measured using a PIV technique demonstrates the detailed wake configuration of close symmetric recirculation and near-wake configuration with two toroidal vortices, reversed velocity zone and vorticity contours.

  • PDF

구 후류에 미치는 유동장 밀도 성층화 영향 전산 해석 (Numerical Study for Effects of Density-Stratification on Wake Behind a Sphere)

  • 이승수;양경수;박찬욱
    • 대한기계학회논문집B
    • /
    • 제28권5호
    • /
    • pp.553-559
    • /
    • 2004
  • Stratified flow past a three-dimensional obstacle such as a sphere has been a long-lasting subject of geophysical, environmental and engineering fluid dynamics. In order to investigate the effect of the stratification on the near wake, in particular, the unsteady vortex formation behind a sphere, numerical simulations of stratified flows past a sphere are conducted. The time-dependent Navier-Stokes equations are solved using a three-dimensional finite element method and a modified explicit time integration scheme. Laminar flow regime is considered, and linear stratification of density is assumed under Bossiness approximation. The computed results include the characteristics of the near wake and the unsteady vortex shedding. With a strong stratification, the separation on the sphere is suppressed and the wake structure behind the sphere becomes planar, resembling that behind a vertical cylinder.

Wakes of two inline cylinders at a low Reynolds number

  • Zafar, Farhan;Alam, Md. Mahbub;Muhammad, Zaka;Islam, Md.
    • Wind and Structures
    • /
    • 제29권1호
    • /
    • pp.55-64
    • /
    • 2019
  • The effect of vortex impingement on the fluid dynamics around a cylinder submerged in the wake of another of different diameters is numerically investigated at a Reynolds number Re = 200. While the diameter (D) of the downstream cylinder is fixed, impinging vortices are produced from the upstream cylinder diameter (d) varied as d/D = 0.24, 0.4, 0.6, 0.8 and 1.0, with a spacing ratio L=5.5d, where L is the distance between the center of the upstream cylinder to the front stagnation point of the downstream cylinder. Two-dimensional simulations are carried out using the finite volume method. Fluid forces acting on the two cylinders are correlated with impinging vortices, vortex shedding, and wake structure. Different facets of wake formation, wake structure, and flow separation and their connections to fluid forces are discussed.

CFD를 이용한 Wake Equalizing Duct의 최적설계 (Design Optimization of Wake Equalizing Duct Using CFD)

  • 이호성;김동준
    • 한국해양공학회지
    • /
    • 제25권4호
    • /
    • pp.42-47
    • /
    • 2011
  • In this paper, wake equalizing duct (WED) form optimization was carried out using computational fluid dynamics (CFD) techniques. A WED is a ring-shaped flow vane with a foil-type cross-section fitted to a hull in front of the upper propeller area. The main advantage of a WED is the power savings resulting from the uniformity of the velocity distribution on the propeller plane, a reduction in the flow separation at the aft-body, and lift generation with a forward force component on the foil section. This paper intends to evaluate these functions and find an optimized WED form for minimizing the viscous resistance and equalizing the wake distribution. In the optimization process, the study uses four WED parameters: the angle of the section, longitudinal location, and angles of the axes for the half rings against the longitudinal and transverse planes of the ship. KRISO 300K VLCC2 (KVLCC2) is chosen as an example ship to demonstrate the WED optimization. The optimization procedure uses genetic algorithms (GAs), a gradient-based optimizer for the refinement of the solution, and Non-dominated Sorting GA-II(NSGA-II) for Multiobjective Optimization. The results show that the optimized WED can reduce the viscous resistance at the expense of the uniformity of the wake distribution.

Wind-tunnel study of wake galloping of parallel cables on cable-stayed bridges and its suppression

  • Li, Yongle;Wu, Mengxue;Chen, Xinzhong;Wang, Tao;Liao, Haili
    • Wind and Structures
    • /
    • 제16권3호
    • /
    • pp.249-261
    • /
    • 2013
  • Flexible stay cables on cable-stayed bridges are three-dimensional. They sag and flex in the complex wind environment, which is a different situation to ideal rigid cylinders in two-dimensional wind flow. Aerodynamic interference and the response characteristics of wake galloping of full-scale parallel cables are potentially different due to three-dimensional flows around cables. This study presents a comprehensive wind tunnel investigation of wake galloping of parallel stay cables using three-dimensional aeroelastic cable models. The wind tunnel study focuses on the large spacing instability range, addressing the effects of cable separation, wind yaw angle, and wind angle of attack on wake galloping response. To investigate the effectiveness of vibration suppression measures, wind tunnel studies on the transversely connected cable systems for two types of connections (flexibility and rigidity) at two positions (mid-span and quarter-span) were also conducted. This experimental study provides useful insights for better understanding the characteristics of wake galloping that will help in establishing a guideline for the wind-resistant design of the cable system on cable-stayed bridges.

다단 축류 압축기 정익 흡입면에서의 비정상 경계층 유동 특성 (Flow Characteristics in Unsteady Boundary Layer on Stator Blade of Multi-Stage Axial Compressor)

  • 신유환;;김광호
    • 대한기계학회논문집B
    • /
    • 제28권10호
    • /
    • pp.1210-1218
    • /
    • 2004
  • Experimental study was performed to investigate the flow behavior in boundary layer on the blade suction surface of a multi-stage axial flow compressor, which was focused on the third stage of the 4-stage Low Speed Research Compressor. Flow measurements in the boundary layer were obtained using a boundary layer hot wire probe, which was traversed normal to the blade suction surface at small increments by the probe traverse specially designed. Detailed boundary layer flow measurements covering most of the stator suction surface were taken and are described using time mean and ensemble averaged velocity profiles. Amplitude of the velocity fluctuation and turbulence intensity in the boundary layer flow are also discussed. At midspan, narrow but strong wake zone due to passing wake disturbances is generated in the boundary layer near the blade leading edge for the rotor blade passing period. Corner separation is observed at the tip region near the trailing edge, which causes to increase steeply the boundary layer thickness.

타원형 날개의 공력 특성 연구 (A Study on the Aerodynamic Load Characteristics of an Elliptic Airfoil)

  • 이기영;손명환;김해원
    • 한국군사과학기술학회지
    • /
    • 제6권4호
    • /
    • pp.29-37
    • /
    • 2003
  • Using a wind tunnel testing, the aerodynamic load characteristics of an elliptic airfoil was described. The experimental data was obtained for angles of attack $-20^{\circ}$ to $+20^{\circ}$ with $2^{\circ}$ increments at a chord Reynolds number of $0.99{\times}105$ and $2.48{\times}105$. For each test case, chordwise suction pressure distributions and wake surveys were obtained. Static pressure measurements were made over a 10 sec averaging time at a 10 Hz sampling rate. For each case, wake survey was conducted with a pilot-static probe at 1.0c downstream from the trailing edge at very fine spacing to resolve the wake velocity deficit profile. As can be expected, suction pressure coefficient was increased with angle of attack. The normal force, CNmax, appeared peak value at the incidence angle of $12^{\circ}~14^{\circ}$, and the significant increase in profile drag at this range of angles of attack.