Browse > Article
http://dx.doi.org/10.12989/was.2019.29.1.055

Wakes of two inline cylinders at a low Reynolds number  

Zafar, Farhan (Institute for Turbulence-Noise-Vibration Interaction and Control Harbin Institute of Technology (Shenzhen))
Alam, Md. Mahbub (Institute for Turbulence-Noise-Vibration Interaction and Control Harbin Institute of Technology (Shenzhen))
Muhammad, Zaka (Institute for Turbulence-Noise-Vibration Interaction and Control Harbin Institute of Technology (Shenzhen))
Islam, Md. (Department of Mechanical Engineering, Khalifa University of Science and Technology)
Publication Information
Wind and Structures / v.29, no.1, 2019 , pp. 55-64 More about this Journal
Abstract
The effect of vortex impingement on the fluid dynamics around a cylinder submerged in the wake of another of different diameters is numerically investigated at a Reynolds number Re = 200. While the diameter (D) of the downstream cylinder is fixed, impinging vortices are produced from the upstream cylinder diameter (d) varied as d/D = 0.24, 0.4, 0.6, 0.8 and 1.0, with a spacing ratio L=5.5d, where L is the distance between the center of the upstream cylinder to the front stagnation point of the downstream cylinder. Two-dimensional simulations are carried out using the finite volume method. Fluid forces acting on the two cylinders are correlated with impinging vortices, vortex shedding, and wake structure. Different facets of wake formation, wake structure, and flow separation and their connections to fluid forces are discussed.
Keywords
complex terrain; typhoon wind field; CFD simulation; surface roughness length; topography;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bloor, M.S. (1964), "The transition to turbulence in the wake of a circular cylinder", J. Fluid Mech., 19(2), 290-304. https://doi.org/10.1017/S0022112064000726.   DOI
2 Bouak, F. and Lemay, J. (1998), "Passive control of the aerodynamic forces acting on a circular cylinder", Exp. Therm Fluid Sci., 16(1-2), 112-121. https://doi.org/10.1016/S0894-1777(97)10010-3.   DOI
3 Chen, Y.N., Yang, S.C. and Yang, J.Y. (1999), "Implicit weighted essentially non-oscillatory schemes for the incompressible Navier-Stokes equations", Int. J. Numer. Meth. Fl., 31, 747-765. https://doi.org/10.1002/(SICI)1097-0363(19991030)31:4<747.   DOI
4 Ding, H., Shu, C., Yeo, K.S. and Xu, D. (2007), "Numerical simulation of flows around two circular cylinders by mesh-free least square-based finite difference methods", Int. J. Numer. Meth. Fl., 53(2), 305-332. https://doi.org/10.1002/fld.1281.   DOI
5 Gao, Y., Etienne, S., Wang, X. and Tan, S. (2014), "Experimental study on the flow around two tandem cylinders with unequal diameters", J. Ocean Univ. China, 13(5), 761-770.   DOI
6 Gerrard, J.H. (1966), "The mechanics of the formation region of vortices behind bluff bodies", J. Fluid Mech., 25(2), 401-413. https://doi.org/10.1017/S0022112066001721.   DOI
7 Gresho, P.M., Chan, S.T., Lee, R.L. and Upson, C.D. (1984), "A modified finite element method for solving the time-dependent, incompressible Navier-Stokes equations. Part 2: Applications", Int. J. Numer. Meth. Fl., 4(7), 619-640. https://doi.org/10.1002/fld.1650040703.   DOI
8 Igarashi, T. (1982), "Characteristics of a flow around two circular cylinders of different diameters arranged in tandem". Bulletin of JSME., 25, 349-357. https://doi.org/10.1299/jsme1958.25.349.   DOI
9 Igarashi, T. (1997), "Drag reduction of a square prism by flow control using a small rod", J. Wind Eng. Ind. Aerod., 69-71, 141-153. https://doi.org/10.1016/S0167-6105(97)00150-5.   DOI
10 Kuo, C.H., Chiou, L.C. and Chen, C.C. (2007), "Wake flow pattern modified by small control cylinders at low Reynolds number", J. Fluid. Struct., 23(6), 938-956. https://doi.org/10.1016/j.jfluidstructs.2007.01.002.   DOI
11 Linnick, M.N. and Fasel, H.F. (2005), "A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains", J. Comput. Phys., 204(1), 157-192. https://doi.org/10.1016/j.jcp.2004.09.017.   DOI
12 Liu, C., Zheng, X. and Sung, C.H. (1998), "Preconditioned multigrid methods for unsteady incompressible flows", J. Comput. Phys., 139(1), 35-57. https://doi.org/10.1006/jcph.1997.5859.   DOI
13 Ma, H.L. and Kuo, C.H. (2016), "Control of boundary layer flow and lock-on of wake behind a circular cylinder with a normal slit", Eur. J. Mech. - B/Fluids, 59, 99-114. https://doi.org/10.1016/j.euromechflu.2016.05.001.   DOI
14 Mahir, N. and Altac, Z. (2017), "Numerical investigation of flow and heat transfer characteristics of two tandem circular cylinders of different diameters", Heat Transfer Eng., 38, 1367-1381. https://doi.org/10.1080/01457632.2016.1255027.   DOI
15 Mahir, N. and Altac, Z. (2008), "Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements", Int. J. Heat Fluid Fl, 29(5), 1309-1318. https://doi.org/10.1016/j.ijheatfluidflow.2008.05.001.   DOI
16 Meneghini, J.R., Saltara, F., Siqueira, C.L.R. and Ferrari, J.A. (2001), "Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements", J. Fluid. Struct., 15(2), 327-350.   DOI
17 Prasanth, T.K. and Mittal, S. (2008), "Effect of blockage on free vibration of a circular cylinder at low Re", Int. J. Numer. Meth. Fl., 58(10), 1063-1080. https://doi.org/10.1002/fld.1771.   DOI
18 Mittal, S., Prakash Singh, S., Kumar, B. and Kumar, R. (2006), "Flow past bluff bodies: effect of blockage", Int. J. Comp. Fluid Dyn., 20, 163-173.   DOI
19 Norberg, C. (2003), "Fluctuating lift on a circular cylinder: review and new measurements", J. Fluid. Struct., 17(1), 57-96. https://doi.org/10.1016/S0889-9746(02)00099-3.   DOI
20 Prasad, A. and Williamson, C.H.K. (1997), "A method for the reduction of bluff body drag", J. Wind Eng. Ind. Aerod., 69-71, 155-167. https://doi.org/10.1016/S0167-6105(97)00151-7.   DOI
21 Qin, B., Alam, M.M. and Zhou, Y. (2017), "Two tandem cylinders of different diameters in cross-flow: flow-induced vibration", J. Fluid Mech., 829, 621-658. https://doi.org/10.1017/jfm.2017.510.   DOI
22 Qu, L., Norberg, C., Davidson, L., Peng, S.H. and Wang, F. (2013), "Quantitative numerical analysis of flow past a circular cylinder at Reynolds number between 50 and 200", J. Fluid. Struct., 39, 347-370. https://doi.org/10.1016/j.jfluidstructs.2013.02.007.   DOI
23 Roshko, A. (1954), "On the drag and shedding frequency of bluff body", NACA TN 3169.
24 Sakamoto, H. and Haniu, H. (1988), "Effect of free-stream turbulence on characteristics of fluctuating forces acting on two square prisms in tandem arrangement", J. Fluid. Eng., 110(2), 140-146. doi:10.1115/1.3243526.   DOI
25 Wang, L., Alam, M.M. and Zhou, Y. (2017), "Two tandem cylinders of different diameters in cross-flow: effect of an upstream cylinder on wake dynamics", J. Fluid Mech., 836, 5-42. https://doi.org/10.1017/jfm.2017.735.   DOI
26 Sakamoto, H. and Haniu, H. (1994), "Optimum suppression of fluid forces acting on a circular cylinder", J. Fluid. Eng., 116(2), 221-227. doi:10.1115/1.2910258.   DOI
27 Schlichting, H. and Gersten, K. (2003), Boundary layer theory. Springer Berlin.
28 Tsutsui, T. and Igarashi, T. (2002), "Drag reduction of a circular cylinder in an air-stream", J. Wind Eng. Ind. Aerod., 90(4-5), 527-541. https://doi.org/10.1016/S0167-6105(01)00199-4.   DOI
29 Zafar, F. and Alam, M.M. (2018), "A low Reynolds number flow and heat transfer topology of a cylinder in a wake", Phys. Fluids, 30(8), https://doi.org/10.1063/1.5035105.
30 Williamson, C.H.K. (1988), "Defining a universal and continuous Strouhal-Reynolds number relationship for the laminar vortex shedding of a circular cylinder", Phys. Fluids, 31(10), 2742-2744. https://doi.org/10.1063/1.866978.   DOI
31 Zdravkovich, M.M. (1987), "The effects of interference between circular cylinders in cross flow", J. Fluid. Struct., 1(2), 239-261. https://doi.org/10.1016/S0889-9746(87)90355-0.   DOI
32 Zhang, P.F., Wang, J.J. and Huang, L.X. (2006), "Numerical simulation of flow around cylinder with an upstream rod in tandem at low Reynolds numbers", Appl. Ocean Res., 28(3), 183-192. https://doi.org/10.1016/j.apor.2006.08.003.   DOI
33 Zheng, Q. and Alam, M.M. (2017), "Intrinsic features of flow past three square prisms in side-by-side arrangement", J. Fluid Mech., 826, 996-1033. https://doi.org/10.1017/jfm.2017.378   DOI
34 Alam, M.M. and Zhou, Y. (2007), "Turbulent wake of an inclined cylinder with water running", J. Fluid Mech., 589, 261-303. https://doi.org/10.1017/S0022112007007720   DOI
35 Alam, M.M. (2014), "The aerodynamics of a cylinder submerged in the wake of another", J. Fluid. Struct., 51, 393-400. https://doi.org/10.1016/j.jfluidstructs.2014.08.003.   DOI
36 Alam, M.M. (2014), "The aerodynamics of a cylinder submerged in the wake of another". J. Fluid. Struct., 51, 393-400. https://doi.org/10.1016/j.jfluidstructs.2014.08.003.   DOI
37 Alam, M.M. (2016), "Lift forces induced by phase lag between the vortex sheddings from two tandem bluff bodies", J. Fluid. Struct., 65, 217-237. https://doi.org/10.1016/j.jfluidstructs.2016.05.008.   DOI
38 Alam, M.M., Moriya, M., Takai, K. and Sakamoto, H. (2003a), "Fluctuating fluid forces acting on two circular cylinders in a tandem arrangement at a subcritical Reynolds number", J. Wind Eng. Ind. Aerod., 91(1-2), 139-154. https://doi.org/10.1016/S0167-6105(02)00341-0.   DOI
39 Alam, M.M., Sakamoto, H. and Moriya, M. (2003b), "Reduction of fluid forces acting on a single circular cylinder and two circular cylinders by using tripping rods", J. Fluid. Struct., 18(3-4), 347-366. https://doi.org/10.1016/j.jfluidstructs.2003.07.011.   DOI
40 Alam, M.M., Sakamoto, H. and Zhou, Y. (2006), "Effect of a T-shaped plate on reduction in fluid forces on two tandem cylinders in a cross-flow", J. Wind Eng. Ind. Aerod., 94(7), 525-551. https://doi.org/10.1016/j.jweia.2006.01.018.   DOI
41 Alam, M.M. and Zhou, Y. (2008), "Strouhal numbers, forces and flow structures around two tandem cylinders of different diameters", J. Fluid. Struct., 24(4), 505-526. https://doi.org/10.1016/j.jfluidstructs.2007.10.001.   DOI
42 Alam, M.M., Zhou, Y. and Wang, X.W. (2011), "The wake of two side-by-side square cylinders", J. Fluid Mech., 669, 432-471. https://doi.org/10.1017/S0022112010005288.   DOI
43 Bai, H. and Alam, M.M. (2018), "Dependence of square cylinder wake on Reynolds number", Phys. Fluids, 30(1), https://doi.org/10.1063/1.4996945.
44 Alam, M.M., Moriya, M., Takai, K. and Sakamoto, H. (2002), "Suppression of fluid forces acting on two square prisms in a tandem arrangement by passive control of flow", J. Fluid. Struct., 16, 1073-1092. https://doi.org/10.1006/jfls.2002.0458.   DOI
45 Berger, E. and Wille, R. (1972), "Periodic flow phenomena", Annu. Rev. Fluid Mech., 4, 313-340. https://doi.org/10.1146/annurev.fl.04.010172.001525.   DOI