• Title/Summary/Keyword: wake intensity

Search Result 110, Processing Time 0.021 seconds

Numerical Simulation of Turbulent Wake Behind SUBOFF Model (SUBOFF 모형 후방 난류항적의 수치 시뮬레이션)

  • Nah, Young-In;Bang, Hyung-Do;Park, Jong-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.517-524
    • /
    • 2010
  • This paper covers the numerical studies performed to investigate the characteristics of turbulent wake generated by a submarine, SUBOFF model. A SUBOFF model assumed as an axial-symmetric body was used to generate wake. The numerical simulation was performed by using a commercial S/W, FLUENT, with the same condition as the experiments by Shin et al.(2009). Mainly the cross-sectional distribution of the time-averaged mean wake and turbulent kinetic energy was compared with the experiments. Both results are agreed well with each other in the propeller wake section, but the agreement between both is not so satisfied in the far wake field. It means that more numerous number of grid points and their concentration should be required in that field.

Influence of Unsteady Wake on Flow Characteristics and Heat Transfer from Linear Turbine Cascade (비정상후류가 선형터빈익렬의 유동 특성 및 익형의 열전달에 미치는 영향에 관한 연구)

  • Yoon, Soon-Hyun;Sim, Jae-Kyung;Lee, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1061-1064
    • /
    • 1998
  • To examine the influence of unsteady wake on the flow and heat transfer characteristics, an experiment has been conducted in a four-vane linear cascade. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress were measured using hot wire anemometer, and to measure the convective heat transfer coefficients on the blade surfaces liquid crystal/gold film Intrex technique was used. The disturbance by the unsteady wake is characterized by the unresolved unsteadiness. The unsteady wake enhances the turbulent motion of flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the suction surface increase with increasing unresolved unsteadiness.

  • PDF

A Study on the Effect of Thermal Stratification of a Heated Cylinder Wake (가열된 원주후류의 열성층 영향에 대한 연구)

  • 김경천;정양범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2454-2462
    • /
    • 1994
  • The effects of thermal stratification on the flow of a stratified fluid past a heated circular cylinder were examined in a wind tunnel. Turbulent intensities, rms values of temperature and turbulent convective heat flux distributions in the heated cylinder wake with and without thermal stratification were measured by using a hot-wire and cold-wire combination probe. A phase averaging method was also used to estimated coherent motion in the near wake. It is found that the vertical turbulent motion in the stably stratified flow case dissipates faster than that of the neutral case, i.e., vertical growth of vortical structure is suppressed under the strongly stratified condition. The coherent motion of temperature makes a large contribution like velocity coherent motion. However, the coherent motions of temperature fluctuation become very different with the change of experimental conditions, though the velocity coherent motions are quite similar in all experimental conditions.

Numerical investigation of the effect of the location of stern planes on submarine wake flow

  • Beigi, Shokrallah M.;Shateri, Alireza;Manshadi, Mojtaba D.
    • Ocean Systems Engineering
    • /
    • v.10 no.3
    • /
    • pp.289-316
    • /
    • 2020
  • In the present paper, the effect of the location of stern planes on the flow entering the submarine propeller is studied numerically. These planes are mounted on three longitudinal positions on the submarine stern. The results are presented considering the flow field characteristics such as non-dimensional pressure coefficient, effective drag and lift forces on the stern plane, and the wake flow formed at the rear of the submarine where the propeller is located. In the present study, the submarine is studied at fully immersed condition without considering the free surface effects. The numerical results are verified with the experimental data. It is concluded that as the number of planes installed at the end of the stern section along the submarine model increases, the average velocity, width of the wake flow and its turbulence intensity formed at the end of the submarine enhance. This leads to a reduction in the non-uniformity of the inlet flow to the propulsion system.

Influence of Unsteady Wake on Flow Characteristics and Heat Transfer from Linear Turbine Cascade (비정상후류가 선형터빈익렬의 유동 특성 및 익혀의 열전달에 미치는 영향에 관한 연구)

  • Yoon, Soon-Hyun;Sim, Jae-Kyung;Lee, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.713-716
    • /
    • 1998
  • To examine the influence of unsteady wake on the flow and heat transfer characteristics, an experiment has been conducted in a four-vane linear cascade. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress were measured using hot wire anemometer, and to measure the convective heat transfer coefficients on the blade surfaces liquid crystal/gold film Intrex technique was used. The disturbance by the unsteady wake is characterized by the unresolved unsteadiness. The unsteady wake enhances the turbulent motion of flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the suction surface increase with increasing unresolved unsteadiness.

  • PDF

Influence of Unsteady Wake on Flow Characteristics and Heat Transfer from Linear Turbine Cascade (비정상후류가 선형터빈익렬의 유동 특성 및 익형의 열전달에 미치는영향에 관한 연구)

  • Yoon, Soon-Hyun;Sim, Jae-Kyung;Lee, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.393-396
    • /
    • 1998
  • To examine the influence of unsteady wake on the flow and heat transfer characteristics, an experiment has been conducted in a four-vane linear cascade. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress were measured using hot wire anemometer, and to measure the convective heat transfer coefficients on the blade surfaces liquid crystal/gold film Intrex technique was used. The disturbance by the unsteady wake is characterized by the unresolved unsteadiness. The unsteady wake enhances the turbulent motion of flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the suction surface increase with increasing unresolved unsteadiness.

  • PDF

Investigation of wake characteristics in turbulence of stable atmospheric boundary layer (안정경계층 난류에서의 터빈 후류 특성 연구)

  • Na, Jisung;Ko, Seungchul;Lee, Joon Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.3
    • /
    • pp.28-31
    • /
    • 2016
  • In this study, we investigate the wake characteristics in two cases which are laminar inflow and turbulent inflow. To solve the flow with wind turbines and its wake, we use large eddy simulation (LES) technique with actuator line method (ALM) and turbulent inflow of Turbsim. Turbulent inflow which contains the characteristic of the stable atmospheric boundary layer is used. We perform the quantitative analysis of velocity deficit and turbulence intensity in two cases. Time series of velocity deficit at the first, the second column in two cases are compared to observe the performance of wind turbine. The performance in the first column in laminar inflow is overestimated compared to that in turbulent inflow. And we observe that wake in the case with turbulent inflow drive to the span-wise direction and wake recovery in turbulent inflow is more effective. In quadrant analysis of Reynolds stress, the ejection and the sweep motion in turbulent inflow case are bigger than those in laminar inflow case.

Velocity Field Measurements of Propeller Wake Using a Phase-averaged PTV Technique (위상평균 PTV 기법을 이용한 프로펠러 후류의 속도장 측정)

  • Bu-Geun Paik;Sang-Joon Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.41-47
    • /
    • 2002
  • Turbulent wake behind a ship propeller has been investigated using the adaptive hybrid 2-frame PTV(Particle Tracking Velocimetry). 400 instantaneous velocity fields were measured according to 4 different blade phases and ensemble-averaged to investigate the spatial evolution of the vortical structure of near wake within one propeller diameter downstream. The phase averaged mean velocity fields show the potential wake and the viscous wake formed by the boundary layers developed on the blade surfaces. As the tip vortex evolves downstream, the slipstream is contracted and the turbulent intensity is decreased with viscous dissipation and turbulent diffusion.

Measurement of Turbulent Intensity Distributions of a Cylinder Wake

  • Doh, Deog Hee;Cho, Gyeong Rae;Moon, Kyeong Rok;Cho, Yong Beom
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • Turbulence properties of a cylinder wake (d=10 mm) have been investigated with a new volume PTV algorithm. The measurement system consists of two-high-cameras(1 $k{\times}1$ k), a Nd-Yag laser and a host computer. A fitness function representing three-dimensional coherency has been adopted to sort out spurious vectors. A hybrid fitness function representing the relations between the fitness and the three-dimensional shortest distances constructed by the two collinears of the two cameras has been also adopted. The constructed algorithm has been employed for the measurements of the cylinder wakes. The Reynolds numbers tested in this paper are 360, 540, 720, 900, 1080 and 1260. More than 10,000 instantaneous 3D vectors have been obtained by the constructed system. The volumetric distributions of the turbulence intensities (for u', v', w') indicate that clearly different patterns for all Reynolds numbers and imply that a regular pattern (like a similarity rule) for the turbulent properties exists.

A Study on the Characteristics of Cylinder Wake Placed in Thermally Stratified Flow (IV) -On the Cylinder Wake with Various Heating Rates- (열성층유동장에 놓인 원주후류의 특성에 대한 연구 (4) -가열량의 변화에 따른 원주후류에 대하여-)

  • 김경천;정양범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1340-1350
    • /
    • 1995
  • The effects of thermal stratification on the flow past a heated circular cylinder with various heating rates were examined in a wind tunnel. Turbulent intensities, r.m.s.values of temperature and turbulent convective heat flux distributions in the cylinder wakes with and without thermal stratification were measured by using a hot-wire and cold-wire combination probe. The phase averaging method was also used to estimate coherent contributions to the turbulent flow field in the near wake. The results show that the scalar mixing process is very different according to the mean temperature fields especially in the upper part of the wake. The coherent structure of the temperature field makes a large contribution to the time mean value like velocity components. However, the coherency of the temperature fluctuation is very different with the change of mean temperature fields, though the velocity coherent motions are quite similar in all experimental conditions.