• 제목/요약/키워드: wake field

검색결과 318건 처리시간 0.031초

상용 CFD 프로그램을 이용한 풍력터빈 축소모델 출력계수 검증 및 후류 해석 (Validation of Power Coefficient and Wake Analysis of Scaled Wind Turbine using Commercial CFD Program)

  • 김병수;백인수;유능수
    • 한국태양에너지학회 논문집
    • /
    • 제35권1호
    • /
    • pp.35-43
    • /
    • 2015
  • A numerical simulation on the wake flow of a wind turbine which is a scaled version of a multi-megawatt wind turbine has been performed. Two different inlet conditions of averaged wind speed including one below and one above the rated wind speed were used in the simulation. Steady-state pitch angles of the blade associated with the two averaged wind speeds were imposed for the simulation. The steady state analysis based on the Reynolds averaged Navier-Stokes equations with the method of frame motion were used for the simulation to find the torque of the rotor and the wake field behind the wind turbine. The simulation results were compared with the results obtained from the wind tunnel testing. From comparisons, it was found that the simulation results on the turbine power are pretty close to the experimental values. Also, the wake results were relatively close to the experimental results but there existed some discrepancy in the shape of velocity deficit. The reason for the discrepancy is considered due to the steady state solution with the frame motion method used in the simulation. However, the method is considered useful for solutions with much reduced calculation time and reasonably good accuracy compared to the transient analysis.

진동하는 NACA 4412 에어포일 근접후류에서의 레이놀즈수 효과 1: 평균속도장 (Reynolds Number Effects on the Near-Wake of an Oscillating Naca 4412 Airfoil, Part 1 : Mean Velocity Field)

  • 장조원
    • 한국항공우주학회지
    • /
    • 제31권7호
    • /
    • pp.15-25
    • /
    • 2003
  • 진동하는 에어포일의 근접후류 특성을 조사하기 위한 실험적 연구가 수행되었다. NACA 4412에어포일은 1/4 시위 지점을 중심으로 조화적으로 피칭운동을 하고, 순간받음각이 +6$^{\circ}$에서 -6$^{\circ}$까지 진동하도록 하였다. 진동하는 에어포일의 근접후류에서의 평균속도를 측정하기 위하여 열선풍속계를 사용하였다. 본 연구에서 자유류의 속도는 3.4, 12.4, 26.2 m/s이다. 이러한 자유류 속도에 따른 시위 레이놀즈수는 $R_N$=5.3${\times}10^4$, 1.9${\times}10^5$, 4.1${\times}10^5$이고, 무차원 진동수는 K=0.1이다. 레이놀즈수가 진동하는 에어포일의 근접후류에 미치는 영향을 나타내기 위하여 축방향 위상평균 속도분포를 제시하였다. 본 측정에서 모든 경우에 속도결손은 $R_N$=5.3${\times}10^4$인 경우에 아주 크고, $R_N$=1.9${\times}10^5$과 4.1${\times}10^5$인 경우에는 작다는 것을 관찰 할 수 있었다. 이와 같이 위상평균속도의 커다란 차이는 $R_N$=5.3${\times}10^4$과 1.9${\times}10^5$ 사이에 있다는 것을 관찰하였다. 따라서 본 연구는 진동하는 에어포일의 근접후류에서의 레이놀즈수의 임계값이 5.3${\times}10^4$에서 1.9${\times}10^5$ 범위에 존재한다는 것을 보여준다.

축류 압축기내의 2차원 유동 특성 (Two-Dimensional Flow Behavior Through a Stage of an Axial Compressor)

  • 홍성훈;백제현
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2561-2571
    • /
    • 1996
  • The flow in the turbomachinery is very unsteady due to the stator-rotor interaction. It has been indicated that the stator-rotor interaction has three distinct causes of unsteadiness: that is, the viscous vortex shedding, wake rotor interaction and potential stator-rotor interaction. In this paper, the mechanism of unsteady potential interaction and wake interaction in the stator-rotor stage flow is numerically investigated in two-dimensional view point. The numerical technique used is the upwind scheme of Van Leer's Flux Vector Splitting(FVS) and cubic spline interpolation is applied on zonal interface. Then, the flow field of a compressor stage composed of NACA 65410 is analyzed. Flow fields are found to be simulated reasonably by this method and the sensitivity due to back-pressure variation is more stronger than rotor-velocity variation.

자동차 후류에서 에어스포일러의 영향에 대한 PIV 측정 (Effects of the Air Spoiler on the Wake Behind a Road Vehicle by PIV Measurements)

  • 김진석;성재용;김정수;최종욱;김성초
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.136-143
    • /
    • 2006
  • A particle image velocimetry (PlV) technique has been applied to measure the quantitative flow field characteristics behind a road vehicle with/without an air spoiler attached on its trunk and to estimate its effect on the wake. A vehicle model scaled in the ratio of 1/43 is set up in the mid-section of a closed-loop water tunnel. The Reynolds number based on the vehicle length is $10^5$. To investigate the three-dimensional structure of the recirculation zone and vortices, measurements are carried out on the planes both parallel and perpendicular to the free stream, respectively. The results show significant differences in the recirculation region and the vorticity distributions according to the existence of the air spoiler. The focus and the saddle point, appearing just behind the air spoiler, are disposed differently along the spanwise direction. Regarding the streamwise vortices, the air spoiler produces large wing tip vortices. They have opposite rotational directions to C-pillar vortices which are commonly observed in case that the air spoiler is absent. The wing tip vortices generate the down-force and as a result, they can make the vehicle more stable in driving.

PIV 측정을 통한 자동차 후류 3차원 와구조의 정량적 해석 (On the Visualization of Three-Dimensional Vortical Structures in the Wake behind a Road Vehicle by PIV Measurements)

  • 이석종;성재용;김진석;김성초;김정수;최종욱
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.58-63
    • /
    • 2005
  • Three-dimensional vortical structures in the wake behind a road vehicle has been visualized with the help of two-dimensional PIV measurement data. A three-dimensional velocity field has been reconstructed from several sectional measurement data in the x-y, y-z and z-x planes. Isovorticity surface observed by stacking only the sectional data in each plane, does not show the vortical structures within the recirculation region but represents only the strong shear flows. Thus, in the present study, the velocity component normal to the x-y plane is obtained by interpolating those velocities in the z-x plane. Then, a $\lambda_{2}$-definition which captures the local pressure minimum or vortex core, is applied to visualize the vortices in the recirculation region. The final results represent a successful configuration for the three-dimensional vortices.

  • PDF

역동적 이벤트 영역 탐색을 위한 에너지 절약형 분산 알고리즘 (Energy-Saving Distributed Algorithm For Dynamic Event Region Detection)

  • ;나현숙
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(D)
    • /
    • pp.360-365
    • /
    • 2010
  • In this paper, we present a distributed algorithm for detecting dynamic event regions in wireless sensor network with the consideration on energy saving. Our model is that the sensing field is monitored by a large number of randomly distributed sensors with low-power battery and limited functionality, and that the event region is dynamic with motion or changing the shape. At any time that the event happens, we need some sensors awake to detect it and to wake up its k-hop neighbors to detect further events. Scheduling for the network to save the total power-cost or to maximize the monitoring time has been studied extensively. Our scheme is that some predetermined sensors, called critical sensors are awake all the time and when the event is detected by a critical sensor the sensor broadcasts to the neighbors to check their sensing area. Then the neighbors check their area and decide whether they wake up or remain in sleeping mode with certain criteria. Our algorithm uses only 2 bit of information in communication between sensors, thus the total communication cost is low, and the speed of detecting all event region is high. We adapt two kinds of measure for the wake-up decision. With suitable threshold values, our algorithm can be applied for many applications and for the trade-off between energy saving and the efficiency of event detection.

  • PDF

회전하는 선박 프로펠러 전방 유입류에 대한 PIV 속도장 해석 (PIV Velocity Field Analysis of Inflow ahead of a Rotating Marine Propeller)

  • 이상준;백부근
    • 대한조선학회논문집
    • /
    • 제41권4호
    • /
    • pp.30-37
    • /
    • 2004
  • Flow characteristics of the inflow ahead of a rotating propeller attached to a container ship model were investigated using a two-frame PIV (Particle Image Velocimetry) technique. Ensemble-averaged mean velocity fields were measured at four different blade phases. The mean velocity fields show the acceleration of inflow due to the rotating propeller and the velocity deficit in the near-wake region. The axial velocity distribution of inflow in the upper plane of propeller is quite different from that in the lower plane due to the thick hull boundary layer. The propeller inflow also shows asymmetric axial velocity distribution in the port and starboard side. As the inflow moves toward the propeller, the effect of phase angle variation of propeller blade on the inflow becomes dominant. In the upper plane above the propeller axis the inflow has very low axial velocity and large turbulent kinetic energy, compared with the lower plane. The boundary layer developed along the bottom surface of stern hull forms a strong shear layer affecting vortex structure of the propeller near-wake.

고해상 3차원 입자영상유속계 개발과 구 유동장 정밀해석 적용연구 (Development of High-Definition 3D-PTV and its Application to High-Precision Measurements of a Sphere Wake)

  • 황태규;도덕희
    • 설비공학논문집
    • /
    • 제17권12호
    • /
    • pp.1161-1168
    • /
    • 2005
  • A Multi-Sectional 3D-PTV algorithm was developed to reduce the calculation time of the conventional GA-3D-PTV. The hardware system of the constructed 3D-PTV system consists of two high-speed cameras ($1,024\times1,018$ pixels, 60 fps), a metal halogen lamp (400W) and a host computer. The sphere(D=30mm) is suspended in a circulating water channel $(300mm\times300mm\times1,200m)$ and Reynolds number is 1,130. About 5,000 instantaneous three-dimensional velocity vectors have been obtained by the constructed 3D-PTV system. Turbulent properties such as turbulent intensity, Reynolds stress and turbulent kinetic energy were obtained. An eigenvalue analysis was carried out using the obtained instantaneous 3D velocity vectors to get the topological relations of the asymptotically stable critical point. Two structured shells, inner shell and outer shell, were found in the sphere wake and their motions were clarified by the measured data.

Mode analysis and low-order dynamic modelling of the three-dimensional turbulent flow filed around a building

  • Lei Zhou;Bingchao Zhang;K.T. Tseb
    • Wind and Structures
    • /
    • 제38권5호
    • /
    • pp.381-398
    • /
    • 2024
  • This study presents a mode analysis of 3D turbulent velocity data around a square-section building model to identify the dynamic system for Kármán-type vortex shedding. Proper orthogonal decomposition (POD) was first performed to extract the significant 3D modes. Magnitude-squared coherence was then applied to detect the phase consistency between the modes, which were roughly divided into three groups. Group 1 (modes 1-4) depicted the main vortex shedding on the wake of the building, with mode 2 being controlled by the inflow fluctuation. Group 2 exhibited complex wake vortexes and single-sided vortex phenomena, while Group 3 exhibited more complicated phenomena, including flow separation. Subsequently, a third-order polynomial regression model was used to fit the dynamics system of modes 1, 3, and 4, which revealed average trend of the state trajectory. The two limit cycles of the regression model depicted the two rotation directions of Kármán-type vortex. Furthermore, two characteristic periods were identified from the trajectory generated by the regression model, which indicates fast and slow motions of the wake vortex. This study provides valuable insights into 3D mode morphology and dynamics of Kármán-type vortex shedding that helps to improve design and efficiency of structures in turbulent flow.

전진 비행하는 탠덤로터의 간섭효과에 대한 수치적 연구 (Numerical Investigation on Interference Effects of Tandem Rotor in Forward Flight)

  • 이재원;오세종;이관중;김덕관
    • 한국항공우주학회지
    • /
    • 제37권7호
    • /
    • pp.615-626
    • /
    • 2009
  • 본 논문에서는 전진 비행하는 탠덤로터의 로터 겹침에 의한 간섭효과에 대해 연구하였다. 기 개발된 시간전진 자유후류 모델이 고려된 비정상 패널 코드는 후류와 깃(blade)이 아주 근접한 경우에 불안정성이 발생하였다. 이를 제거하기 위해서 장속도기법을 적용하여 코드를 개선하였다. 개선된 코드를 이용하여 전진 비행하는 탠덤로터의 상호작용에 가장 큰 영향을 미치는 인자인 로터 간격과 전진비에 따른 파라메타 연구를 수행하였다. 공력성능의 비교를 통해 겹침유도동력계수는 일정한 전진비 이후에는 로터 사이의 수평 거리의 영향은 거의 받지 않으며, 수직 거리의 제곱에 반비례하는 것을 알 수 있었다. 또한 전진비가 증가함에 따라 겹침유도동력계수는 증가하다가 감소하는 경향을 보였다.