• Title/Summary/Keyword: vorticity field

Search Result 153, Processing Time 0.025 seconds

Effects of Tsunami Waveform on Energy Dissipation of Aquatic Vegetation (쓰나미 파형이 수중식생의 에너지소산에 미치는 영향)

  • Lee, Woo-Dong;Park, Jong-Ryul;Jeon, Ho-Seong;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.121-129
    • /
    • 2017
  • The present study numerically investigated the influence of the waveform distribution on the tsunami-vegetation interaction using a non-reflected wave generation system for various tsunami waveforms in a two-dimensional numerical wave tank. First, it was possible to determine the wave attenuation mechanism due to the tsunami-vegetation interaction from the spatial waveform, flow field, vorticity field, and wave height distribution. The combination of fluid resistance in the vegetation and a large gap and creates a vortex according to the flow velocity difference in and out of the vegetation zone. Thus, the energy of a tsunami was increasingly reduced, resulting in a gradual reduction in wave height. Compared to existing approximation theories, the double volumetric ratio of the waveform increased the reflection coefficient of the tsunami-vegetation interaction by 34%, while decreasing the transfer coefficient and energy attenuation coefficient by 25% and 13%, respectively. Therefore, the hydraulic characteristics of a tsunami is highly likely to be underestimated if the solitary wave of the approximation theory is applied for the tsunami.

Characteristics of Flow Field at Curved Section of Oil Fence using PIV Measurements and CFD Simulations (PIV 계측과 CFD 해석을 통한 오일펜스 만곡부 단면에서의 유동장 특성)

  • Kim, Tae-Ho;Jang, Duck-Jong;Na, Sun-Chol;Bae, Jae-Hyun;Kim, Dae-An
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.29-37
    • /
    • 2011
  • PIV measurements of the velocity field, pressure field, vorticity, and turbulent intensity in the rear of curved section of an oil fence with current speed showed that the flow directions in the rear of flow boundary area were similar to those in the front of it. As the current speed increased, the patterns of pressure distribution were changed, and the turbulent flow became more irregular. CFD simulations under the same conditions as the PIV tests showed that the flow patterns of the wake were similar to those by PIV tests in speed of 0.3 m/s and less, but were distinctively deviated from those in 0.4 m/s due to the flexibility of the oil fence, which was not properly taken care of in CFD modeling.

PIV Measurement of Viscous Flow Field in the Wake of Transom Stern (PIV기법을 이용한 트랜섬 선미 후류 점성유동장 계측)

  • Lee, Gyoung-Woo;Gim, Ok-Sok
    • Journal of Navigation and Port Research
    • /
    • v.35 no.10
    • /
    • pp.805-810
    • /
    • 2011
  • An experiment was carried out to figure out the instantaneous flow characteristics in the wake of the transom stern's 2-dimensional section by 2-frame grey level cross correlation PIV method at $Re=3.5{\times}103$, $Re=7.0{\times}103$. The stern angles of models were learning at $45^{\circ}$(Model "A"), $90^{\circ}$(Model "B") and $135^{\circ}$(Model "C") respectively based on the survey results of real ships. The depth of wetted surface is 40mm from free surface. As Reynolds number increases, vortices increase in volume and move their way to the downstream. Flow separation appeared at the end of model's bottom.

Effects of the Air Spoiler on the Wake Behind a Road Vehicle by PIV Measurements (자동차 후류에서 에어스포일러의 영향에 대한 PIV 측정)

  • Kim, Jin-Seok;Sung, Jae-Yong;Kim, Jeong-Soo;Choi, Jong-Wook;Kim, Sung-Cho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.136-143
    • /
    • 2006
  • A particle image velocimetry (PlV) technique has been applied to measure the quantitative flow field characteristics behind a road vehicle with/without an air spoiler attached on its trunk and to estimate its effect on the wake. A vehicle model scaled in the ratio of 1/43 is set up in the mid-section of a closed-loop water tunnel. The Reynolds number based on the vehicle length is $10^5$. To investigate the three-dimensional structure of the recirculation zone and vortices, measurements are carried out on the planes both parallel and perpendicular to the free stream, respectively. The results show significant differences in the recirculation region and the vorticity distributions according to the existence of the air spoiler. The focus and the saddle point, appearing just behind the air spoiler, are disposed differently along the spanwise direction. Regarding the streamwise vortices, the air spoiler produces large wing tip vortices. They have opposite rotational directions to C-pillar vortices which are commonly observed in case that the air spoiler is absent. The wing tip vortices generate the down-force and as a result, they can make the vehicle more stable in driving.

Lattice-Boltzmann Simulation of Fluid Flow around a Pair of Rectangular Cylinders

  • Taher, M.A.;Baek, Tae-Sil;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.62-70
    • /
    • 2009
  • In this paper, the fluid flow behavior past a pair of rectangular cylinders placed in a two dimensional horizontal channel has been investigated using Lattice-Boltzmann Method(LBM). The LBM has built up on the D2Q9 model and the single relaxation time method called the Lattice-BGK(Bhatnagar-Gross-Krook)model. Streamlines, velocity, vorticity and pressure contours are provided to analyze the important characteristics of the flow field for a wide range of non dimensional parameters that present in our simulation. Special attention is paid to the effect of spacing(d) between two cylinders and the blockage ratio A(=h/H), where H is the channel height and h is the rectangular cylinder height. for different Reynolds numbers. The first cylinder is called upstream cylinder and the second one as downstream cylinder. The downstream fluid flow fields have been more influenced by its blockage ratios(A) and Reynolds numbers(Re) whereas the upstream flow patterns(in front of downstream cylinder) by the gap length(d) between two cylinders. Moreover, it is observed that after a certain gap, both upstream and downstream flow patterns are almost similar size and shape. The simulation result has been compared with analytical solution and it is found to be in excellent agreement.

Numerical analysis of the impulsive noise generation and propagation using high order scheme (고차의 수치적 기법을 적용한 충격소음의 생성 및 전파 해석)

  • Kim, Min-Woo;Kim, Sung-Tae;Kim, Kyu-Hong;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1494-1498
    • /
    • 2007
  • Impulsive shooting noise is basically complex phenomenon which contains the linear and non-linear characteristics. For those reasons, numerical analysis of impulsive shooting noise has the difficulties in control of the numerical stability and accuracy on the simulation. In this research, Wave-number Extended Finite Volume Scheme (WEFVS) is applied to the numerical analysis of impulsive shooting noise. In the muzzle blast flow simulation, the generation of the precursor wave and the induced vortex ring are observed. Consequently, blast wave. vortex ring interaction and vortex ring. bow shock wave interaction are evaluated on the shooting process using the accurate and stable scheme. The sound generation in the interactions can be explained by the vorticity transport theorem. The shear layer is evolved behind the projectiles due to the jet flow. In these computations, the impulsive shooting noise is generated by the complex interaction with shooting process and is propagated to the far-field boundary. The impulsive shooting noise generation can be observed by the applications of WEFVS and analyzed by the physical phenomena.

  • PDF

Numerical Computation of Vertex Behind a Bluff Body in the Flow between Parallel Plates (평행평판 내의 지주에 의한 와동 유동에 관한 수치해석)

  • 김동성;유영환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1163-1170
    • /
    • 1992
  • A computer program was developed to analyze the two-dimensional unsteady incompressible viscous flow behind a rectangular bluff body between two parallel plates. The Peaceman-Rachford alternating direction implicit numerical method and Wachspress parameter were adopted to solve the governing equations in vorticity-transport and stream function formulation. The steady state flow and the vortex flow behind a rectangular bluff body in a chemical were investigated for Reynolds numbers of 200 and 500. The vortex shedding was generated by a physical pertubation numerically imposed at the center of the flow field for a short time. It was observed that the perturbed flow became periodic after a transient period.

Experimental Investigation on the Vortical Flows in a Single-Entry Swirl Mixing Chamber (단일공급 스월 혼합챔버 내의 와류유동에 대한 실험적 연구)

  • Kim, Hyung-Min;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.445-450
    • /
    • 2011
  • Swirling flows inside a swirl mixing chamber are investigated for simple configuration where swirl is produced by a tangential entry type swirl generator. The flow downstream of the swirl generator has been quantified by measurements two velocity components and their corresponding mean values along axial and radial direction using Particle Image Velocimetry(PIV). The mass flow rate of the tangential entry is increased in order to study their effect on the flow field. From the measurement profile of velocity and vorticity, flow mixing characteristics in a swirl mixing chamber are evaluated.

  • PDF

Numerical Experiment on the Sogcho Eddy due to the strong offshore winds in the East Sea

  • Kim Soon Young;Lee Hyong Sun;Lee Jae Chul
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.1
    • /
    • pp.7-18
    • /
    • 1998
  • In order to understand the generation of the Sogcho Eddy due to the strong offshore winds, we first investigated the characteristics of winds at Sogcho, Kangnung and Samchuk, and then carried out a series of numerical experiments using the nonlinear 1 1/2-layer model. The models were forced by wind stress fields, similar in structure to the prevailing winds that a field in the east coast of Korea during the winter season. The winds were composed of the background winds $(-1\;dyne/cm^2)$ for 90 days and the local winds $(-4\;dyne/cm^2)$ for 30 days. The analysis of wind data at three stations (Sogcho, Kangnung, and Samchuk) showed that the wind was stronger in winter than in other seasons and the offshore component was much dominant. According to our numerical solutions, the Sogcho Eddy of about 200 km in diameter was generated due to the strong offshore winds prevailing in the Kangnung - Sogcho regions. The eastward propagation of the Rossby waves reflected at the western boundary resulted in the eastward meandering motion from the eastern side of the eddy.

  • PDF

Wiggle Instability of Magnetized Spiral Shocks

  • Kim, Yonghwi;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.77.1-77.1
    • /
    • 2014
  • Galactic spiral arms are abundant with interesting gaseous substructures. It has been suggested that arm substructures arise from the wiggle instability (WI) of spiral shocks. While the nature of the WI remained elusive, our recent work without considering magnetic fields shows that the WI is physically originated from the accumulation of potential vorticity (PV) generated by deformed shock fronts. To elucidate the characteristics of the WI in more realistic galactic situations, we extend our previous linear stability analysis of spiral shocks by including magnetic fields. We find that magnetic fields reduce the amount of density compression at shocks, making the shock fronts to move toward the upstream direction. Magnetic tension forces from bent field lines stabilize the WI by prevent the generation of PV. When the spiral-arm forcing is F=5% of the centrifugal force of galaxy rotation, the maximum growth rate of the WI is found to be about 1.0, 0.4, and 0.2 times the orbital angular frequency for the plasma parameter ${\beta}=100$, 10, and 5, respectively. Shocks with ${\beta}=1$ are stable to the WI for F=5%, while becoming still unstable when F=10%.

  • PDF