• 제목/요약/키워드: vortex shedding model

검색결과 127건 처리시간 0.024초

Wind loads on a solar array

  • Kopp, G.A.;Surry, D.;Chen, K.
    • Wind and Structures
    • /
    • 제5권5호
    • /
    • pp.393-406
    • /
    • 2002
  • Aerodynamic pressures and forces were measured on a model of a solar panel containing six slender, parallel modules. Of particular importance to system design is the aerodynamically induced torque. The peak system torque was generally observed to occur at approach wind angles near the diagonals of the panel ($45^{\circ}$, $135^{\circ}$, $225^{\circ}$ and $315^{\circ}$) although large loads also occurred at $270^{\circ}$, where wind is in the plane of the panel, perpendicular to the individual modules. In this case, there was strong vortex shedding from the in-line modules, due to the observation that the module spacing was near the critical value for wake buffeting. The largest loads, however, occurred at a wind angle where there was limited vortex shedding ($330^{\circ}$). In this case, the bulk of the fluctuating torque came from turbulent velocity fluctuations, which acted in a quasi-steady sense, in the oncoming flow. A simple, quasi-steady, model for determining the peak system torque coefficient was developed.

보텍스 쉐딩에 의한 얕은 직사각형통 내에서의 유동특성 (The Flow Characteristics in a Shallow Rectangular Tank by Vortex Shedding)

  • 서용권;문종춘
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.2122-2130
    • /
    • 1993
  • A numerical and experimental study has been performed on the flow in a shallow rectangular tank accompanying a vortex shedding. The model is composed of a rectangular tank with a vertical plate with a length half the width of the tank. The tank is subject to a horizontal sinusoidal oscillation. The numerical analysis shows that the pattern of vortex shedding changes considerably when the Reynolds number $R_e$ is varied from 500 to 7500. It is symmetric for $R_e$ <1500 and asymmetric for $R_e$ > 1500. The kinetic energies of the right-hand and left-hand sides of the vertical plate are used to quantify the degree of the asymmetry. Experimental visualization is carried out at $R_e$ = 3876 and 52000. The development of the streamline pattern at $R_e$ = 3876 is in closer agreement with the numerical result at $R_e$ = 1000 than that at $R_e$ =3876. The asymmetric pattern is observed at $R_e$ = 52000.

Effect of aerodynamic modifications on the surface pressure patterns of buildings using proper orthogonal decomposition

  • Tse, K.T.;Chen, Zeng-Shun;Lee, Dong-Eun;Kim, Bubryur
    • Wind and Structures
    • /
    • 제32권3호
    • /
    • pp.227-238
    • /
    • 2021
  • This study analyzed the pressure patterns and local pressure of tall buildings with corner modifications (recessed and chamfered corner) using wind tunnel tests and proper orthogonal decomposition (POD). POD can distinguish pressure patterns by POD mode and more dominant pressure patterns can be found according to the order of POD modes. Results show that both recessed and chamfered corners effectively reduced wind-induced responses. Additionally, unique effects were observed depending on the ratio of corner modification. Tall building models with recessed corners showed fluctuations in the approaching wind flow in the first POD mode and vortex shedding effects in the second POD mode. With large corner modification, energy distribution became small in the first POD mode, which shows that the effect of the first POD mode reduced. Among building models with chamfered corners, vortex shedding effects appeared in the first POD mode, except for the model with the highest ratio of corner modifications. The POD confirmed that both recessed and chamfered corners play a role in reducing vortex shedding effects, and the normalized power spectral density peak value of modes showing vortex shedding was smaller than that of the building model with a square section. Vortex shedding effects were observed on the front corner surfaces resulting from corner modification, as with the side surface. For buildings with recessed corners, the local pressure on corner surfaces was larger than that of side surfaces. Moreover, the average wind pressure was effectively reduced to 88.42% and 92.40% in RE1 on the windward surface and CH1 on the side surface, respectively.

A study on aeroelastic forces due to vortex-shedding by reduced frequency response function

  • Zhang, Xin;Qian, Zhanying;Chen, Zhen;Zeng, Fanna
    • Wind and Structures
    • /
    • 제12권1호
    • /
    • pp.63-76
    • /
    • 2009
  • The vortex-induced vibration of an ${\sqcap}$-shaped bridge deck sectional model is studied in this paper via the wind tunnel experiment. The vibratory behavior of the model shows that there is a transition of the predominant vibration mode from the vertical to the rotational degree of freedom as the wind speed increases gradually or vice versa as the wind speed decreases gradually. The vertical vibration is, however, much weaker in the latter case than in the former. This is a phenomenon which is difficult to model by existing parametric models for vortex-induced vibrations. In order to characterize the aeroelastic property of the ${\sqcap}$-shaped sectional model, a time domain force identification scheme is proposed to identify the time history of the aeroelastic forces. After the application of the proposed method, the resultant fluid forces are re-sampled in dimensionless time domain so that reduced frequency response function (RFRF) can be obtained to explore the properties of the vortex-induced wind forces in reduced frequency domain. The RFRF model is proven effective to characterize the correlation between the wind forces and bridge deck motions, thus can explain the aeroelastic behavior of the ${\sqcap}$-shaped sectional model.

Reynolds number effects on twin box girder long span bridge aerodynamics

  • Kargarmoakhar, Ramtin;Chowdhury, Arindam G.;Irwin, Peter A.
    • Wind and Structures
    • /
    • 제20권2호
    • /
    • pp.327-347
    • /
    • 2015
  • This paper investigates the effects of Reynolds number (Re) on the aerodynamic characteristics of a twin-deck bridge. A 1:36 scale sectional model of a twin girder bridge was tested using the Wall of Wind (WOW) open jet wind tunnel facility at Florida International University (FIU). Static tests were performed on the model, instrumented with pressure taps and load cells, at high wind speeds with Re ranging from $1.3{\times}10^6$ to $6.1{\times}10^6$ based on the section width. Results show that the section was almost insensitive to Re when pitched to negative angles of attack. However, mean and fluctuating pressure distributions changed noticeably for zero and positive wind angles of attack while testing at different Re regimes. The pressure results suggested that with the Re increase, a larger separation bubble formed on the bottom surface of the upstream girder accompanied with a narrower wake region. As a result, drag coefficient decreased mildly and negative lift coefficient increased. Flow modification due to the Re increase also helped in distributing forces more equally between the two girders. The bare deck section was found to be prone to vortex shedding with limited dependence on the Re. Based on the observations, vortex mitigation devices attached to the bottom surface were effective in inhibiting vortex shedding, particularly at lower Re regime.

지면 운동에 따른 정사각주 후류의 와류 유동장 수치 해석 Part I. 고정 지면과 이동 지면 비교 (Numerical Analysis of the Vortex Shedding past a Square Cylinder with Moving Ground)

  • 김태윤;이보성;이동호
    • 한국항공우주학회지
    • /
    • 제33권6호
    • /
    • pp.1-7
    • /
    • 2005
  • 비압축성 평균 Navier-Stokes 방정식에 $\varepsilon{-SST}$ 난류 모델을 적용하여 정사각주 주위 유동과 지면의 간극 유동을 해석하였다. 지면이 운동할 경우에는 지면의 박리 전단층의 강도가 약화되어 사각주 상/하부의 박리 전단층 상호 작용을 촉진시키므로 고정 지면에 비하여 더 낮은 간극에서도 와류 배출이 발생한다. 지면 효과를 고려할 경우 고정 지면의 경우와는 달리 지면의 박리 거품이 존재하지 않게 되고, 이로 인하여 2차 박리 주파수는 나타나지 않는다. 이와 더불어 지면이 운동할 경우 고정 지면에 비해 더 높은 와류 배출 주파수와 공력 계수가 나타남을 확인하였다.

Full-scale investigation of wind-induced vibrations of a mast-arm traffic signal structure

  • Riedman, Michelle;Sinh, Hung Nguyen;Letchford, Christopher;O'Rourke, Michael
    • Wind and Structures
    • /
    • 제20권3호
    • /
    • pp.405-422
    • /
    • 2015
  • In previous model- and full-scale studies, high-amplitude vertical vibrations of mast-arm traffic signal structures have been shown to be due to vortex shedding, a phenomenon in which alternatingly shed, low-pressure vortices induce oscillating forces onto the mast-arm causing a cross-wind response. When the frequency of vortices being shed from the mast-arm corresponds to the natural frequency of the structure, a resonant condition is created causing long-lasting, high-amplitude vibrations which may lead to the fatigue failure of these structures. Turbulence in the approach flow is known to affect the cohesiveness of vortex shedding. Results from this full-scale investigation indicate that the surrounding terrain conditions, which affect the turbulence intensity of the wind, greatly influence the likelihood of occurrence of long-lasting, high-amplitude vibrations and also impact whether reduced service life due to fatigue is likely to be of concern.

얕은 직사각형 통내의 혼돈적 교반 (The Chaotic Stirring in a Shallow Rectangular Tank)

  • 서용권;문종춘
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.380-388
    • /
    • 1994
  • Study on the chaotic stirring has been performed numerically and experimentally for a shallow rectangular tank accompanying a vortex shedding. The model is composed of a rectangular tank with a vertical plate with a length half the width of the tank. The tank is subject to a horizontal sinusoidal oscillation. The chaotic stirring was analysed by Poincare sections, unstable manifolds and Lyapunov exponents. As Reynolds number is increased the stirring effect is decreased due to the growth of a regular regions near the lower surface of the tank. In the other hand decrease of Reynolds number gives a weaker vortex shedding resulting in the poorer stirring effect. It was also found that the Lyapunov exponent is the highest at the dimensionless period of 1.3-1.5, which seems to be the best condition for the efficient stirring. The experimental visualization for the deformation of materials exhibits the striation pattern similar to the unstable manifold obtained numerically.

수치모형을 이용한 다원주 주위의 유동 해석 (Analysis of Flow Around Multi-Circular Cylinders Using a Numerical Model)

  • 이상화;박정호
    • 한국해양공학회지
    • /
    • 제20권2호
    • /
    • pp.29-35
    • /
    • 2006
  • The flow patterns around multi-circular cylinders are studies, in order to obtain a global view on the structure of wave control and circulation of sea flow in coastal region. The flow force depends upon the vortex shedding exerted on the structure, especially how the vortex shedding affects the erosion when the structure sets on the sand bottom. Therefore, it is necessary that the flow pattern be hocked. In order to simulate the flow around multi-circular cylinders, the CFX and FLUENT of the computational fluid dynamics (CFD) program were used and compared with the experimental results of the flow visualization installation. The phenomena of flow around the multi-cylinders will be applied to fundamental data for predicting the flow force acting against the structure, erosion and sedimentation around cylinders in arrangement.

Riser의 내부유체 흐름이 소용돌이로 인한 Riser 동적반응에 미치는 영향 (The Effect of Internal Flow on Vortex-Induced Vibration of Marine Riser)

  • Hong, Nam-Seeg;Hsiang Wang
    • 한국해안해양공학회지
    • /
    • 제7권2호
    • /
    • pp.198-208
    • /
    • 1995
  • Riser 내부의 유체흐름을 포함해서 동적해석을 하기 위해 유도된 비선형 모델의 근사화한 형태에 Iwan-Blevin의 모델을 결합함으로써 흐름-소용돌이 모델이 개발되며 개발된 수학약모델을 해석함으로써 면내 조류흐름에 따라 형성된 면외 과류로 인한 riser의 진동에 내부 유체흐름이 미치는 영향에 관해 조사하였다. Riser 내부 유체흐름은 일정한 유속분석을 가진 정상류로 가정하며 riser관은 신축성 혹은 비신축성 관상빔으로 간주된다. 유도된 모델에 Galerkin의 유한요소근이법을 적용함으로써 수치해석을 위한 모델을 개발하였다. 관내부 유체 흐름이 riser의 소용돌이로 인한 진동특성에 미치는 영향을 상부 인장력, 내부류체 흐름 혹은 조류속도 등과 같은 여러 영향요인 등을 변화시키면서 조사하였다. 수치해석 결과 내부유체 흐름으로 인한 영향을 줄이기 위하여 riser의 상부에 인장력을 riser의 허용내력 한도내에서 증가시키는 방법이 있으나 vortex shedding으로 인해 형성되는 resonance band를 피하기 위해 설계 관점에서 세심한 주의가 요구된다. 특히 길이가 긴 rise에 대한 세심한 주의가 요구된다.

  • PDF