• 제목/요약/키워드: vortex shedding frequency

검색결과 214건 처리시간 0.058초

Effect of lock-on frequency on vortex shedding in the cylinder wake

  • Yoo Jung Yul;Sung Jaeyong;Kim Wontae
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2001년도 Proceedings of 2001 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.86-99
    • /
    • 2001
  • Vortex lock-on or resonance in the flow behind a circular cylinder is investigated from a time-resolved PIV when a single frequency oscillation is superimposed on the mean incident velocity. Measurements are made of the $K\acute{a}rm\acute{a}n$ and streamwise vortices in the wake-transition regime at the Reynolds number 360. Streamwise vortices at the lock-on and natural shedding states are observed, as well as the changes in the wake region with the change of the shedding frequency of lock-on state. When lock-on occurs, the vortex shedding frequency is found to be half the oscillation frequency as expected from previous experiments. At the lock-on state, the $K\acute{a}rm\acute{a}n$ vortices are observed to be more disordered by the increased strength and spanwise wavelength of the streamwise vortices, which leads to a strong three-dimensional motion. Recirculation and vortex formation region at the lock-on state is reduced as the oscillating frequency is increased. By comparing the Reynolds stresses at the lock-on and natural shedding states, $\bar{u'u'}\;and \;\bar{u'u'}$ at the lock-on state are concentrated on the shear layer around the cylinder. The $\bar{u'u'}\;at\;f_o/f_n=2.0$ has a large value near the centerline, compared with that of other cases. Considering the traces of maximum of u', in the wake region near the cylinder, wake width at the lock-on state is wider than that at the natural shedding state.

  • PDF

서로 다른 두 개의 와류방출 주파수간의 비선형간섭 (Harmonized Non-linear Interaction Between Different Two Vortex Shedding Frequencies)

  • 김상일;승삼선;이승철
    • 대한기계학회논문집B
    • /
    • 제38권3호
    • /
    • pp.211-217
    • /
    • 2014
  • 본 연구는 서로 다른 두 개의 직경을 가지는 원기둥으로부터 나오는 두 개의 와류방출주파수간의 비선형간섭에 관한 것이다. 두 개의 서로 다른 주파수는 두 개의 직경을 가지는 원기둥에 의해 인위적으로 만들어졌고, 원기둥 후류의 속도 변동은 3 차원으로 측정되었다. 그리고 원기둥 표면에는 압력공이 설치되어 원기둥 표면의 압력도 측정하였다. 이 압력 신호를 기준 신호로 사용하였다. TSC 해석을 병행하여 두 주파수간의 비선형간섭의 세기를 조사하였다. 그 결과, 다음과 사실을 알았다. i)원기둥 후류의 주파수 분포, ii)위상집합평균법에 의한 원기둥 후류의 3 차원적인 흐름 상태, iii)두 개의 직경을 가지는 원기둥에서 나오는 두 개의 주파수간의 비선형간섭과 저주파의 종와류과의 관계.

Study on the Unsteady Wakes Past a Square Cylinder near a Wall

  • Kim Tae Yoon;Lee Bo Sung;Lee Dong Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1169-1181
    • /
    • 2005
  • Experimental and numerical studies on the unsteady wake field behind a square cylinder near a wall were conducted to find out how the vortex shedding mechanism is correlated with gap flow. The computations were performed by solving unsteady 2-D Incompressible Reynolds Averaged Navier-Stokes equations with a newly developed ${\epsilon}-SST$ turbulence model for more accurate prediction of large separated flows. Through spectral analysis and the smoke wire flow visualization, it was discovered that velocity profiles in a gap region have strong influences on the formation of vortex shedding behind a square cylinder near a wall. From these results, Strouhal number distributions could be found, where the transition region of the Strouhal number was at $G/D=0.5{\sim}0.7$ above the critical gap height. The primary and minor shedding frequencies measured in this region were affected by the interaction between the upper and the lower separated shear layer, and minor shedding frequency was due to the separation bubble on the wall. It was also observed that the position (y/G) and the magnitude of maximum average velocity $(u/u_{\infty})$ in the gap region affect the regular vortex shedding as the gap height increases.

핀-튜브군에서 배플 길이에 따른 음향공진 (Acoustic resonance by length of acoustic baffle at Finned Tube bank)

  • 방경보;류제욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.98-103
    • /
    • 2003
  • This paper presents phenomena of vibration and noise due to acoustic resonance in tube bank of a HRSG. Acoustic resonance is may arise when the vortex shedding frequency coincides with the acoustic natural frequency. At this tube bank, dominant frequencies of vibration in this system were 43.5, 67.5㎐. The 3$\^$rd/ acoustic natural frequency calculated was 68.5㎐. When the difference of vortex shedding frequency and acoustic natural frequency is within ${\pm}$20%, acoustic resonance could occur. In this system, in order to prevent acoustic resonance, acoustic baffle was installed in the tube bank before operating. But acoustic resonance occurred. So, we evaluate the effect of acoustic mode due to baffle extension length. After investigating, we did revise acoustic baffle to eliminate acoustic resonance effectively.

  • PDF

Numerical Analysis of Unsteady Flow around a Transversely Oscillating Circular Cylinder

  • Moon, Ji-Soo;Kim, Jae-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권1호
    • /
    • pp.27-33
    • /
    • 2012
  • The relationship between the excitation frequency and the vortex shedding frequency is analyzed during the oscillation of the circular cylinder. Two-dimension unsteady Navier-Stoke's equation is calculated by using the Optimized High Order Compact (OHOC) scheme. The flow condition is Mach number 0.3 and Reynold's number 1000. From the results acquired by calculation, it can be inferred that, when the excitation frequency is near the vortex shedding frequency at the fixed cylinder wake, the oscillation frequency of lift and drag coefficients appears to lock-on. The lock-on refers to a phenomenon in which the aerodynamic coefficient appears as one primary oscillation frequency through excitation and its amplitude is amplified. In the non-lock-on zone, the excitation frequency is not in the lock-on mode anymore and beat is formed in which two or more primary oscillation frequencies of the aerodynamic coefficient are mixed together.

음향교란을 받는 난류박리기포의 이산와류 수치해석 (Discrete-vortex Simulation of Turbulent Separation Bubble Excited by Acoustic Perturbatioons)

  • 임재욱;성형진
    • 대한기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.775-786
    • /
    • 1992
  • 본 연구에서는 DVM의 이론적 배경과 수치계산에 대해 자세히 다루었다. 음향 교란이 가졌을 때의 재부착에 대한 수치해석결과는 Kiya등의 실험결과와 비교하 였으며 만족할만한 일치를 보여주었다. 결과 및 고찰에서는 주로 음향교란이 있는 경우의 재부착길이를 최소화하는 주파수와 교란이 없는 유동의 난류구조해석을 평균속 도 및 압력과 그의 섭동치, 그리고 파워 스펙트럼과 상관계수등을 통해 자세히 비교검 토하였다.

뒷날이 잘린 2차원 수중익의 와도 흘림 주파수 (Vortex Shedding Frequency for a 2D Hydrofoil with a Truncated Trailing Edge)

  • 이승재;이준혁;서정천
    • 대한조선학회논문집
    • /
    • 제51권6호
    • /
    • pp.480-488
    • /
    • 2014
  • Vortex shedding which is the dominant feature of body wakes and of direct relevance to practical engineering problems, has been intensively studied for flows past a circular cylinder. In contrast, vortex shedding from a hydrofoil trailing edge has been studied to much less extent despite numerous practical applications. The physics of the problem is still poorly understood. The present study deals with $K{\acute{a}}rm{\acute{a}}n$ vortex shedding from a truncated trailing-edge hydrofoil in relatively high Reynolds number flows. The objectives of this paper are twofold. First, we aim to simulate unsteady turbulent flows past a two dimensional hydrofoil through a hybrid particle-mesh method and penalization method. The vortex-in-cell (VIC) method offers a highly efficient particle-mesh algorithm that combines Lagrangian and Eulerian schemes, and the penalization method enables to enforce body boundary conditions by adding a penalty term to the momentum equation. The second purpose is to investigate shedding frequencies of vortices behind a NACA 0009 hydrofoil operating at a zero angle of attack.

강합성 단면을 가진 사장교의 와류진동 발생 예측 (Prediction of Vortex-induced Vibration of the Cable-Stayed Bridge with Steel Composite Deck)

  • 조재영;조영래;이학은
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.449-453
    • /
    • 2007
  • After over a century of effort by researchers and engineers, the problem of bluff body flow, in particular vortex shedding frequency, remains almost entirely in the empirical, descriptive realm of knowledge. Computational methods have been systematically applied for vortex-induced vibrations of the cable-stayed bridge with steel composite deck by unsteady wind loadings due to vortex-shedding. The focus of this paper is to predict the vortex-induced vibration of the cable-stayed bridge with steel composite deck based computational fluid dynamics(CFD).

  • PDF

Aerodynamic measurements of across-wind loads and responses of tapered super high-rise buildings

  • Deng, Ting;Yu, Xianfeng;Xie, Zhuangning
    • Wind and Structures
    • /
    • 제21권3호
    • /
    • pp.331-352
    • /
    • 2015
  • A series of wind tunnel tests were conducted on tapered super high-rise buildings with a square cross section by applying synchronous pressure measurement technology. The effects of global strategy of chamfered modification on aerodynamic loads and wind-induced responses were investigated. Moreover, local aerodynamic strategies of opening a ventilation slot in the corner of equipment and refuge floors were carried out. Results show that the global strategy of tapered elevation increased the vortex shedding frequency, but reduced vortex shedding energy, leading to reduction of across-wind aerodynamic loads and responses. Chamfered modification suppressed the across-wind vortex shedding effect on tapered buildings. Opening the ventilation slot further suppressed the strength of vortex shedding and reduced the residual energy related to vortex shedding in aerodynamic loads of chamfered buildings. Finally, the optimized locations of local aerodynamic strategies were suggested.

Tripping wire가 부착된 회전원주에 의한 난류휴류의 응집구조 (Coherent Structures of Turbulent Wake Past a Rotating Circular Cylinder with a Tripping Wire)

  • 부정숙;이종춘
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1927-1939
    • /
    • 1995
  • An experimental investigation is conducted to find out the large scale coherent structures in the intermediate wake past a rotating cylinder with a single tripping wire attached. Relation between the vortex shedding frequency and the spin rate of rotating cylinder and the effects of the tripping wire on the flow characteristics were studied by using spectral analysis and conditional phase average technique, respectively. It is found that the vortex shedding frequency is bound to a certain range and varies regularly as spin rate increases. The coherent structures are compared with those of the plain rotating cylinder in the case of spin rate of 1.0. Distance between the upper and lower center of vortices increase and the vortex shedding time is delayed, the velocity fluctuation energy decreases near the center line of vortices and it spreads out to the outer region. The Reynolds shear stress increases highly in the upper region and the turbulent wake width expands with strong entrainment process.