• Title/Summary/Keyword: vortex shedding frequency

검색결과 215건 처리시간 0.03초

원형 세장 실린더의 와 유기 진동;수조 실험 결과 (Vortex induced vibration of circular pipes; the experiment in a water tank)

  • 김양한;박주배;홍섭;최윤락
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.478-483
    • /
    • 2001
  • We experimentally attempted to understand the vibration characteristics of a flexible pipe excited by vortex shedding. This has been extensively studied in the past decades (For example, see [2-9]). However, there are still areas that need more study. One of them is to study the relation between spatial characteristics of a flow induced vibrating pipe, such as its length, the distribution of wave number, and frequency responses. A non-linear mechanism between the responses of in-line and cross-flow directions is also an area of interests, if the pipe is relatively long so that structural modal density is reasonably high. In order to investigate such areas, two kinds of instrumented pipe were designed. The instrumented pipes, of which the lengths are equally 6m, are wound with rubber and silicon tape in different ways, having different vortex shedding conditions. One has uniform cross-section of diameter of 26. 7mm, and the other has equally spaced by 4 sub-sections, which are composed of different diameters of 75.9, 61.1, 45.6 and 26.7mm. Both pipes are towed in a water tank (200m ${\times}$ 16m ${\times}$ 7m) so that they experienced different vortex shedding excitations. The towing pipe experiments exhibit several valuable features. One of them is that the natural frequencies and their corresponding strain mode shapes dominate the strain response of the uniform pipe. However, for those of non-uniform pipe, the responses are more likely local and many modes participate in it.

  • PDF

분지관 혼합기의 난류혼합에 대한 유동가시화 연구 (II) (Flow Visualization Study on the Turbulent Mixing of Two Fluid Streams(II))

  • 김경천;신대식
    • 대한기계학회논문집B
    • /
    • 제22권7호
    • /
    • pp.1013-1021
    • /
    • 1998
  • Various vortical structures are investigated by using three kinds of flow visualization methods in branch pipe flows. There are two typical flow patterns when a jet from the branch pipe with various angles is injected to the main pipe cross flow. The velocity range of cross flow of the main pipe is 0.2 m/s ~ 1.2 m/s and the corresponding Reynolds number, R$_{p}$ is of the range 1.5 * 10$^{3}$ ~ 9.02 * 10$^{3}$. The velocity ratio(R), jet velocity/cross flow velocity, is chosen from 1.3 to 4. The subsequent behavior and development of the ring vortices which are created at the jet boundary mainly depend on the velocity ratio. An empirical relation for the shedding frequency of the ring vortices is derived. It is also found that there are two different vortex shedding mechanism in the mixing of two fluid streams.s.

파이프유동장에 분사되는 제트의 유동특성 연구 (Flow characteristics of a cross jet issued in the fully developed pipe flow)

  • 김경천;신대식
    • 대한기계학회논문집B
    • /
    • 제22권7호
    • /
    • pp.927-936
    • /
    • 1998
  • In the fully developed pipe flow, when jet is injected in cross to the flow there are complex transition flows caused by interaction of the cross flow and jet. These interactions are studied by means of the flow visualization methods and frequency analysis using a hot-wire anemometer. The velocity range of cross flow of the pipe is 0.3 m/s ~ 1.2 m/s and the corresponding Reynolds number, R$\sub$p/, based on the pipe diameter is 2.25 * 10$\^$3/ ~ 9.02 * 10$\^$3/. The velocity ratio (R), jet velocity/cross flow velocity, is chosen from 2 to 10. A circular cylinder is placed in the pipe instead of jet to observe the vortex shedding from the solid body. To compare the jet and circular cylinder flow, the vortical structure is analyzed in both cases and the structure of vortices and the origin of its formation are investigated, especially. The vortex shedding of the dominant coherent structure is compared between the jet flow and the circular cylinder flow. In the case of the jet flow, the Strouhal numbers are different depending on the existence of the upright vortex as well as the velocity ratio (R).

Numerical investigations on the along-wind response of a vibrating fence under wind action

  • Fang, Fuh-Min;Ueng, Jin-Min;Chen, J.C.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.329-336
    • /
    • 2002
  • The along-wind response of a surface-mounted elastic fence under the action of wind was investigated numerically. In the computations, two sets of equations, one for the simulation of the unsteady turbulent flow and the other for the calculation of the dynamic motion of the fence, were solved alternatively. The resulting time-series tip response of the fence as well as the flow fields were analyzed to examine the dynamic behaviors of the two. Results show that the flow is unsteady and is dominated by two frequencies: one relates to the shear layer vortices and the other one is subject to vortex shedding. The resulting unsteady wind load causes the fence to vibrate. The tip deflection of the fence is periodic and is symmetric to an equilibrium position, corresponding to the average load. Although the along-wind aerodynamic effect is not significant, the fluctuating quantities of the tip deflection, velocity and acceleration are enhanced as the fundamental frequency of the fence is near the vortex or shedding frequency of the flow due to the occurrence of resonance. In addition, when the fence is relatively soft, higher mode response can be excited, leading to significant increases of the variations of the tip velocity and acceleration.

중공부(中空部)를 가진 고층건축물(高層建築物)의 풍응답(風應答) 특성(特性)에 관한 풍동실험(風洞實驗) 연구(硏究) (Wind Tunnel Test Study on the Characteristics of Wind-Induced Responses of Tall Buildings with Openings)

  • 김동우;길용식;하영철
    • 한국강구조학회 논문집
    • /
    • 제17권4호통권77호
    • /
    • pp.499-509
    • /
    • 2005
  • 강풍으로 유발되는 고층건축물의 풍진동은 주로 와류에 의한 풍직각방향의 진동에 의하여 발생한다. 이러한 진동은 단면형상이 일정한 유연하고, 경량이며, 경감쇠인 고층건축물인 경우 가장 심하게 발생한다. 본 논문은 와류에 기인한 풍직각방향의 진동을 저감시키기 위한 공역학적인 방법을 논한 것이다. 항력 및 횡력방향의 압력을 균등화하고 또한 양방향의 공간적인 간섭을 분산시키고, 풍직각 방향으로 작용하는 풍력의 크기를 효율적으로 감소시키기 위하여 건축물의 풍방향 및 풍직각방향에 중공부를 설치하였다. 실험모형은 모두 형상비가 8:1이 되도록 하였고, 중공부의 형상은 2종류, 크기는 2종류, 위치는 6종류로 변화시킨 총 24종류의 모형을 제작하여 풍력실험을 실시한 후 각 모형에 대한 풍방향 및 풍직각방향의 변위응답특성을 조사하였다. 최종적으로 중공부를 가진 모형의 효율성을 분석하기 위하여 중공부를 가진 모형에 대한 결과를 중공부가 없는 정사각형 각주의 변위응답 특성과 비교 분석하여 중공부의 형상 변화, 크기 변화, 위치 변화에 따른 풍진동의 저감효과의 정도를 정량적으로 규명하였다.

Experimental investigation on vortex induced forces of oscillating cylinder at high Reynolds number

  • Xu, Yuwang;Fu, Shixiao;Chen, Ying;Zhong, Qian;Fan, Dixia
    • Ocean Systems Engineering
    • /
    • 제3권3호
    • /
    • pp.167-180
    • /
    • 2013
  • Hydrodynamic characteristics of a bluff cylinder oscillating along transverse direction in steady flow were experimentally investigated at Reynolds number of $2{\times}10^5$. The effects of non-dimensional frequency, oscillating amplitude and Reynolds number on drag force, lift force and phase angle are studied. Vortex shedding mechanics is applied to explain the experimental results. The results show that explicit similarities exist for hydrodynamic characteristics of an oscillating cylinder in high and low Reynolds number within subcritical regime. Consequently, it is reasonable to utilize the test data at low Reynolds number to predict vortex induced vibration of risers in real sea state when the Reynolds numbers are in the same regime.

Experimental study on vortex induced vibration of risers with fairing considering wake interference

  • Lou, Min;Wu, Wu-gang;Chen, Peng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권2호
    • /
    • pp.127-134
    • /
    • 2017
  • Vortex Induced Vibration (VIV) is a typical flow-structure interference phenomenon which causes an unsteady flow pattern due to vortex shedding at or near the structure's natural frequency leading to resonant vibrations. VIV may cause premature fatigue failure of marine risers and pipelines. A test model was carried out to investigate the role of a stationary fairing by varying the caudal horn angle to suppress riser VIV taking into account the effect of wake interference. The test results show significant reduction of VIV for risers disposed in tandem and side-by-side. In general, fairing with a caudal horn of $45^{\circ}$ and $60^{\circ}$ are efficient in quelling VIV in risers. The results also reveal fairing can reduce the drag load of risers arranged side-by-side. For the tandem configuration, a fairing can reduce the drag load of an upstream riser, but will enlarge the drag force of the downstream riser.

고속열차의 객실 소음에 미치는 머드플랩의 영향에 관한 연구 (A Study on the Effect of Mud-flap on the Cabin Noise in KTX)

  • 최성훈;정인수;서승일
    • 한국철도학회논문집
    • /
    • 제9권5호
    • /
    • pp.550-554
    • /
    • 2006
  • In the early stage of operation of KTX, passengers complained of the excessive cabin noise as the passes the tunnel. The noise is caused partly by wheel-rail contact and partly by airflow around the carbody. In this study, to reduce the cabin noise, the effect of the mud-flaps located between the cars is investigated. A series of tests was conducted to clarify the influences of the type and length of mud-flap, and train speed on the cabin noise. The optimum length of mud-flap was found. The shedding vortices around the mud-flap is thought to be the cause of the aerodynamic noise. Strouhal number and the resonant shedding frequency around the mud-flap correlated well with the cabin noise level.

와류이탈 위상차를 이용한 사보니우스형 풍력터빈의 소음 저감 설계에 관한 수치적 연구 (Numerical Analysis on the Low Noise Designs of Savonius Wind Turbines by Inducing Phase Difference in Vortex Shedding)

  • 김상현;정철웅
    • 대한기계학회논문집A
    • /
    • 제38권3호
    • /
    • pp.269-274
    • /
    • 2014
  • 본 논문에서는 사보니우스형 풍력터빈의 저소음 설계에 관한 연구를 수행하였다. 선행연구를 통해 BPF 보다 높은 주파수를 기본주파수로 가지며 발생하는 하모닉 성분의 순음소음이 사보니우스형 풍력터빈의 주요한 소음임을 밝혔고, 이러한 하모닉 성분의 소음은 와류에 의한 것임을 확인하였다. 본 연구에서는 이러한 선행연구결과를 바탕으로, 사보니우스형 풍력터빈의 저소음 설계를 위해 이탈되는 와류에 위상차를 유도할 수 있는 터빈 날개 끝단을 도입하였다. CFD 기법 및 음향상사법을 적용한 복합 전산공력음향학 기법을 적용하여 제안한 저소음 사보니우스형 풍력터빈의 방사 소음을 수치적으로 예측하였고, 기존의 형상과 비교를 통해 소음 저감 효과를 확인하였다.