• Title/Summary/Keyword: vortex erosion

Search Result 20, Processing Time 0.035 seconds

VORTEX SHEAR VELOCITY AND ITS EROSION IN THE SCOUR HOLE

  • Lee, Hong-Sik;Kim, Jin-Hong;Lee, Sam-Hee
    • Water Engineering Research
    • /
    • v.1 no.4
    • /
    • pp.259-266
    • /
    • 2000
  • Scour hole is formed due to the high shear stress of the jet flow at the outlet of a hydraulic structure and vortex erosion occurs in the scour hole. It is important to determine the amount of vortex erosion occurs in the scour hole. It is important to determine the amount of vortex erosion for the design of bed protection. If the vortex erosion continues and reaches to the hydraulic structure, it causes the deformation of the structure itself. To obtain the amount of the vortex erosion, it is necessary to determine the shear velocity of the line vortex in the scour hole was derived by the theory of energy conservation and found to be related to the upstream overflow velocity. The amount of vortex erosion from the scour hole was obtained using entrainment equation for given value of shear velocity. For a design purpose, if the flow velocity at the end of an apron and the properties of bed material are given, the amount of vortex erosion was obtained.

  • PDF

VORTEX STRUCTURE IN THE SCOUR HOLE BY GATE OPENING OF HYDRAULIC STRUCTURE

  • Kim, Jin-Hong;Choe, Jae-Wan
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.83-92
    • /
    • 2000
  • Jet flow can occur by gate opening at downstream of a hydraulic structure such as weir of drainage gate. If the stream bed is not hard or the bed protection is not sufficient, vortex erosion occurs and a resulting scour hole will be formed due to the high shear stress of the jet flow. Once the scour hole is formed, a vortex occurs in ti and this vortex causes additional erosion. If this erosion continues and reaches to the hydraulic structure, it can undermine the bottom of the hydraulic structure and this will lead to failure of the structure itself. Thus, it is necessary to define the physical features of the vortex structure in the scour hole for the design of the bed protection. This study presents the turbulent vortex structure in the scour hole by the gate opening of the hydraulic structure. Characteristics of vortex motion, circulation, vortex scale and vortex were analyzed through experiments. Experimental results of the vortex velocity were compared with theoretical ones. From these, circulation and vortex scale were obtained with known values of inflow depth, inflow velocity and scale of scour hole

  • PDF

Study on vortex Characteristics and Estimation of Vortex Erosion at Downstream Part of Hydraulic Structure (수리구조물 하류부에서의 Vortex의 특성 및 세굴량 산정에 관한 연구)

  • 김진홍
    • Water for future
    • /
    • v.27 no.1
    • /
    • pp.101-109
    • /
    • 1994
  • Characteristics of the vortex structure and the secondary scour at downstream part of the hydraulic structure such as drainage sluice or spillway ere studied. Mean shear velocity in the scour hole could be derived by the theory of energy conservation and the amount of a vortex erosion could be obtained using entrainment equation for given value of a shear velocity. Comparison of erosion rates with others showed a large value at low shear velocity due to the continuous and strong upward flow of the macroturbulence different from the conventional vortex formed in the lee-side of a sand ripple. For a design purpose, if the flow depth at the end of an apron and the properties of bed material are given, the amount of vortex erosion can be known.

  • PDF

Analysis of Flow Around Multi-Circular Cylinders Using a Numerical Model (수치모형을 이용한 다원주 주위의 유동 해석)

  • Lee Sang-Hwa;Park Jung-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.29-35
    • /
    • 2006
  • The flow patterns around multi-circular cylinders are studies, in order to obtain a global view on the structure of wave control and circulation of sea flow in coastal region. The flow force depends upon the vortex shedding exerted on the structure, especially how the vortex shedding affects the erosion when the structure sets on the sand bottom. Therefore, it is necessary that the flow pattern be hocked. In order to simulate the flow around multi-circular cylinders, the CFX and FLUENT of the computational fluid dynamics (CFD) program were used and compared with the experimental results of the flow visualization installation. The phenomena of flow around the multi-cylinders will be applied to fundamental data for predicting the flow force acting against the structure, erosion and sedimentation around cylinders in arrangement.

Effect of Flow Rate on Erosion Corrosion Damage and Damage Mechanism of Al5083-H321 Aluminum Alloy in Seawater Environment (해수 환경에서 Al5083-H321 알루미늄 합금의 침식부식 손상에 미치는 유속의 영향과 손상 메카니즘)

  • Kim, Young-Bok;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.115-121
    • /
    • 2020
  • In this study, erosion tests and erosion-corrosion tests of Al5083-H321 aluminum alloy were conducted at various flow rates in seawater. The erosion tests were conducted at a flow rate of 0 to 20 m/s, and erosion-corrosion tests were performed by potentiodynamic polarization method at the same flow rate. Characteristic evaluation after the erosion test was conducted by surface analysis. Characteristic evaluation after the erosion-corrosion test was performed by Tafel extrapolation and surface analysis. The results of the surface analysis after the erosion test showed that surface damage tended to increase as the flow rate increased. In particular, intermetallic particles were separated due to the breakdown of the oxide film at 10 m/s or more. In the erosion-corrosion test, the corrosion current density increased as the flow rate increased. Additionally, the surface analysis showed that surface damage occurred in a vortex shape and the width of the surface damage tended to increase as the flow rate increased. Moreover, damage at 0 m/s, proceeded in a depth direction due to the growth of pitting corrosion, and the damaged area tended to increase due to acceleration of the intermetallic particle loss by the fluid impact.

Study on Optimization of Anti-erosion Rudder Section of Large Container Ship by Genetic Algorithm (유전자 알고리즘을 이용한 컨테이너선을 위한 침식예방용 최적방향타 단면 설계)

  • Kim, Moon-Chan;Lee, Un-Sik;Byun, Tae-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.403-410
    • /
    • 2008
  • This paper describes the optimization of the rudder section by the genetic algorism based on VLM(Vortex Lattice Method) and panel method. The developed propeller-rudder analysis program has been validated by comparing with experimental data. The research extends to optimize the anti-erosion rudder section of the large container ship. The object function is the amount of pressure at leading edge of rudder which is closely related with erosion phenomena. The optimized rudder has been compared with conventional rudder with NACA 0021 section by analyzing with the developed program. The finally optimized section has low and mild pressure distribution in comparison with the NACA rudder. The experiments is expected to be carried out for the validation of the present optimization and more parametric study of section geometry is also expected to be conducted in the near future.

Study on visualization of vortex flow on hydrofoils (수중익에서 발생하는 보텍스 유동 가시화 연구)

  • Hong, Ji-Woo;Ahn, Byoung-Kwon
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.48-55
    • /
    • 2021
  • In order to design a propeller with high efficiency and excellent cavitation performance, theoretical and experimental studies on the cavitation and noise characteristics according to the blade section shape are essential. In general, sheet cavitation, bubble cavitation, and cloud cavitation are the main causes of hull vibration and propeller surface erosion. However vortex cavitation, which has the greatest influence on the noise level because the fastest CIS in ship propeller, has been researched for a long time and studies have been conducted recently to control it. In this experiment, the development process of cavitation was measured by using three dimensional wings with two different wing section and wing tip shapes, and the noise level at that time was evaluated. In addition, we evaluated the relationship between cavitation inception and hydrodynamic force using three component load cell and we measured the velocity field of wing wake using LDV.

Cause Analysis of Flow Accelerated Corrosion and Erosion-Corrosion Cases in Korea Nuclear Power Plants

  • Lee, Y.S.;Lee, S.H.;Hwang, K.M.
    • Corrosion Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.182-188
    • /
    • 2016
  • Significant piping wall thinning caused by Flow-Accelerated Corrosion (FAC) and Erosion-Corrosion (EC) continues to occur, even after the Mihama Power Station unit 3 secondary pipe rupture in 2004, in which workers were seriously injured or died. Nuclear power plants in many countries have experienced FAC and EC-related cases in steam cycle piping systems. Korea has also experienced piping wall thinning cases including thinning in the downstream straight pipe of a check valve in a feedwater pump line, the downstream elbow of a control valve in a feedwater flow control line, and failure of the straight pipe downstream of an orifice in an auxiliary steam return line. Cause analyses were performed by reviewing thickness data using Ultrasonic Techniques (UT) and, Scanning Electron Microscope (SEM) images for the failed pipe, and numerical simulation results for FAC and EC cases in Korea Nuclear Power Plants. It was concluded that the main cause of wall thinning for the downstream pipe of a check valve is FAC caused by water vortex flow due to the internal flow shape of a check valve, the main cause of wall thinning for the downstream elbow of a control valve is FAC caused by a thickness difference with the upstream pipe, and the main cause of wall thinning for the downstream pipe of an orifice is FAC and EC caused by liquid droplets and vortex flow. In order to investigate more cases, additional analyses were performed with the review of a lot of thickness data for inspected pipes. The results showed that pipe wall thinning was also affected by the operating condition of upstream equipment. Management of FAC and EC based on these cases will focus on the downstream piping of abnormal or unusual operated equipment.

Cause Analysis for the Wall Thinning and Leakage of a Small Bore Piping Downstream of an Orifice (주증기계통 오리피스 후단 소구경 배관의 감육 및 누설 발생)

  • Hwang, Kyeong Mo
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.227-232
    • /
    • 2013
  • A number of components installed in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), Cavitation, Flashing, and LDIE (Liquid Droplet Impingement Erosion). Those aging mechanisms can lead to thinning of the components. In April 2013, one (1) inch small bore piping branched from the main steam line experienced leakage resulting from wall thinning in a 1,000 MWe Korean PWR nuclear power plant. During the normal operation, extracted steam from the main steam line goes to condenser through the small bore piping. The leak occurred in the downstream of an orifice. A control valve with vertical flow path was placed on in front of the orifice. This paper deals with UT (Ultrasonic Test) thickness data, SEM images, and numerical simulation results in order to analyze the extent of damage and the cause of leakage in the small bore piping. As a result, it is concluded that the main cause of the small bore pipe wall thinning is liquid droplet impingement erosion. Moreover, it is observed that the leak occurred at the reattachment point of the vortex flow in the downstream side of the orifice.

Thermal Spray Coating Layer for Improvement of Erosion and Corrosion Resistance Applicable to Large Sized High Speed Ship's Rudder (대형 고속 선박용 러더의 내침식, 부식 특성 향상을 위한 용사 코팅막)

  • Lee, Yu-Song;Heo, Seong-Hyeon;Kim, Jin-Hong;Kim, Yeo-Jung;Bae, Il-Yong;Lee, Myeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.196-197
    • /
    • 2011
  • Rudder, one of the most important component in the marine vessel, is now being decreased life time to serve due to cavitation erosion, vortex current, high flow speed suffer from ship speed going up dramatically. In this study, 10 kinds of thermal spray coating materials(2 of Zn alloy series, 3 of Al alloy series, 3 of Cu alloy series, 2 of STS alloy series) are chosen to apply on specimens and analyze micro structure, metallic composition, properties(porosity, oxidation) by using visual observation, XRD, EDX etc.. Additionally, to refine the characteristic of corrosion endurance for thermal spray coating layer, compared with thermal spray process and 5 kinds of heavy duty painting and AC paint (Anti-Corrosion Paint). Based on above mentioned experimental results, a priority of all coated specimens on corrosion-erosion endurances finalized and summarized there by desirable composition and process of thermal sprayed material properly.

  • PDF