• 제목/요약/키워드: von Karman turbulence spectrum

검색결과 7건 처리시간 0.024초

재난변동풍하중을 받는 고층건물의 변동풍압분포의 평가 (Estimate of the Fluctuating Pressure Distribution of Tall Building under Hazard Fluctuating Wind Load)

  • 황진철
    • 한국방재안전학회논문집
    • /
    • 제6권2호
    • /
    • pp.49-56
    • /
    • 2013
  • 본 논문에서는 재난변동풍하중을 받는 고층건물의 예비설계과정에서 필요로 하는 자료를 얻기 위하여 경계층풍동 실험을 실시했다. 먼저 본 실험에 앞서 경계층풍동내의 자연풍을 얻기 위하여 확산장치를 이용했고, 이로부터 평균풍속 수직분포, 난류강도, 파워스펙트럼으로 입증했으며, 이 후 변장비 1:2 강체모형을 이용 경계층풍동실험을 실시한 결과로부터 다음과 같은 결론을 얻을 수 있었다. 1. 경계층풍동에서의 평균풍속 및 난류강도의 수직분포가 자연풍과 같이 잘 실현되었다. 2. 변동풍속 스펙트럼은 Von Karman spectrum과 비교한 결과 잘 일치했다. 3. 변동압력 스펙트럼에서 풍상면의 피크분포는 0.01-0.1 Hz영역에서 발생했고, 풍후면은 0.1 Hz영역에서 발생했다. 4. 자기상관계수는 재난변동풍하중의 작용시간이 증가하면 정성확률과정으로 분포하는 사실을 알 수 있었다.

변동풍속의 파워 스펙트럴 밀도에 관한 평가 (Estimation on the Power Spectral Densities of Daily Instantaneous Maximum Fluctuation Wind Velocity)

  • 오종섭
    • 한국방재안전학회논문집
    • /
    • 제10권2호
    • /
    • pp.21-28
    • /
    • 2017
  • 시공간적으로 불규칙하게 작용하는 변동 풍속 난류의 자료는 풍공학적으로 돌풍계수 평균풍속 변동 풍하중등의 계산에서 요구되지만, 내풍 및 사용성에 따른 동적응답의 평가에서는 변동 풍속의 파워 스펙트럴 밀도함수가 요구된다. 본 논문에서는 1987-2016.12.1일까지의 일순간최대풍속 자료를 확률과정으로 가정했고, 이 실측된 자료와 확률이론을 근거로 평균류방향 파워 스펙트럴 밀도 함수에 대한 기초적 자료를 얻고자 대표지점(6개 지점)을 선정했다. 선정된 각 지점에 대한 일순간최대풍속자료는 기상청으로부터 획득했다. 해석결과 본 논문에서 평가된 스펙트럼 모델은 저진동수 영역에서는 Solari, 고진동수 영역에서는 von Karman의 모델과 근접한 현상을 나타냈다.

Statistical characteristics of sustained wind environment for a long-span bridge based on long-term field measurement data

  • Ding, Youliang;Zhou, Guangdong;Li, Aiqun;Deng, Yang
    • Wind and Structures
    • /
    • 제17권1호
    • /
    • pp.43-68
    • /
    • 2013
  • The fluctuating wind induced vibration is one of the most important factors which has been taken into account in the design of long-span bridge due to the low stiffness and low natural frequency. Field measurement characteristics of sustained wind on structure site can provide accurate wind load parameters for wind field simulation and structural wind resistance design. As a suspension bridge with 1490 m main span, the Runyang Suspension Bridge (RSB) has high sensitivity to fluctuating wind. The simultaneous and continuously wind environment field measurement both in mid-span and on tower top is executed from 2005 up to now by the structural health monitoring system installed on this bridge. Based on the recorded data, the wind characteristic parameters, including mean wind speed, wind direction, the turbulence intensity, the gust factors, the turbulence integral length, power spectrum and spatial correlation, are analyzed in detail and the coherence functions of those parameters are evaluated using statistical method in this paper. The results indicate that, the turbulence component of sustain wind is larger than extremely strong winds although its mean wind speed is smaller; the correlation between turbulence parameters is obvious; the power spectrum is special and not accord with the Simiu spectrum and von Karman spectrum. Results obtained in this study can be used to evaluate the long term reliability of the Runyang Suspension Bridge and provide reference values for wind resistant design of other structures in this region.

Full-scale measurements of wind effects and modal parameter identification of Yingxian wooden tower

  • Chen, Bo;Yang, Qingshan;Wang, Ke;Wang, Linan
    • Wind and Structures
    • /
    • 제17권6호
    • /
    • pp.609-627
    • /
    • 2013
  • The Yingxian wooden tower in China is currently the tallest wooden tower in the world. It was built in 1056 AD and is 65.86 m high. Field measurements of wind speed and wind-induced response of this tower are conducted. The wind characteristics, including the average wind speed, wind direction, turbulence intensity, gust factor, turbulence integral length scale and velocity spectrum are investigated. The power spectral density and the root-mean-square wind-induced acceleration are analyzed. The structural modal parameters of this tower are identified with two different methods, including the Empirical Mode Decomposition (EMD) combined with the Random Decrement Technique (RDT) and Hilbert transform technique, and the stochastic subspace identification (SSI) method. Results show that strong wind is coming predominantly from the West-South of the tower which is in the same direction as the inclination of the structure. The Von Karman spectrum can describe the spectrum of wind speed well. Wind-induced torsional vibration obviously occurs in this tower. The natural frequencies identified by EMD, RDT and Hilbert Transform are close to those identified by SSI method, but there is obvious difference between the identified damping ratios for the first two modes.

환경변수가 자켓 하부구조물 해상 풍력시스템 거동에 미치는 영향 (Effects of environmental parameters for offshore wind turbine system with jacket support structure)

  • 이종선;박현철;;김용환;나상권;이종현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.38.1-38.1
    • /
    • 2011
  • This study investigates the effects of Pierson-Moskowitz, Jonswap spectrum that are typical irregular wave spectrums for wind turbine system with jacket support structure. Also various offshore environmental parameters based on korean local condition were used in our study. The loads acting on the system was considered by referring to the Design Load Case from IEC guide line. And improved von Karman model was used as a turbulence model. As a result, various significant wave height and peak spectral period cause noticeable difference of extreme and fatigue loads prediction.

  • PDF

풍력터빈의 LQR 제어 (LQR control of Wind Turbine)

  • 남윤수;조장환;임창희;박성수
    • 풍력에너지저널
    • /
    • 제2권1호
    • /
    • pp.74-81
    • /
    • 2011
  • This paper deals with the application of LQ control to the power curve tracking control of wind turbine. However, two more additional tasks are required to apply the LQR theory to wind turbine control. One is the tracking problem instead of regulation, because the wind turbine is controlled as variable speed and variable pitch. The other is LQ integral control., because the rotor speed should be tightly controlled without any steady state error. Starting from the analysis of wind characteristics, design requirement of a wind turbine control system is defined. A design procedure of LQ tracking with integral control is introduced. The performance of LQ tracking system is analyzed and evaluated by numeric simulation.

Observational study of wind characteristics from 356-meter-high Shenzhen Meteorological Tower during a severe typhoon

  • He, Yinghou;Li, Qiusheng;Chan, Pakwai;Zhang, Li;Yang, Honglong;Li, Lei
    • Wind and Structures
    • /
    • 제30권6호
    • /
    • pp.575-595
    • /
    • 2020
  • The characteristics of winds associated with tropical cyclones are of great significance in many engineering fields. This paper presents an investigation of wind characteristics over a coastal urban terrain based on field measurements collected from multiple cup anemometers and ultrasonic anemometers equipped at 13 height levels on a 356-m-high meteorological tower in Shenzhen during severe Typhoon Hato. Several wind quantities, including wind spectrum, gust factor, turbulence intensity and length scale as well as wind profile, are presented and discussed. Specifically, the probability distributions of fluctuating wind speeds are analyzed in connection with the normal distribution and the generalized extreme value distribution. The von Karman spectral model is found to be suitable to depict the energy distributions of three-dimensionally fluctuating winds. Gust factors, turbulence intensity and length scale are determined and discussed. Moreover, this paper presents the wind profiles measured during the typhoon, and a comparative study of the vertical distribution of wind speeds from the field measurements and existing empirical models is performed. The influences of the topography features and wind speeds on the wind profiles were investigated based on the field-measured wind records. In general, the empirical models can provide reasonable predictions for the measured wind speed profiles over a typical coastal urban area during a severe typhoon.