• 제목/요약/키워드: volume fraction effect

검색결과 846건 처리시간 0.028초

Cu를 갖는 오스템퍼드 구상흑연주철의 기계적 성질에 미치는 마르텐사이트의 영향 (Effect of Martensite on the Mechanical Properties of Austempered Ductile Cast Iron with Cu)

  • 강창룡;이종문;손동욱;권성겸;김익수;성장현
    • 열처리공학회지
    • /
    • 제15권6호
    • /
    • pp.255-259
    • /
    • 2002
  • Effect of martensite on the mechanical properties of austempered ductile cast iron was investigated after obtained the martensite by subzero treatment. Retained austenite was transformed to martensite by subzero treatment, and with decreasing subzero treatment temperature, volume fraction of martensite was increased. With increasing of the volume fraction of martensite, tensile strength was increased and elongation was decreased, ratio of increasing of strength and decreasing of elongation was higher in case of specimens with lot's of Cu contents. With increasing of the volume fraction of martensite, hardness slowly increased until only about 5% and it rapidly increased in a straight proportion when it is above 5%, while impact value was rapidly decreased until about 7% but it had a little change when it is above 7%.

냉간압연한 고 Mn 오스테나이트계 스테인리스강의 기계적 성질에 미치는 서브제로처리의 영향 (Effect of Subzero Treatment on the Mechanical Properties of Cold-Rolled High Manganese Austenitic Stainless Steel)

  • 황태현;정목환;이종영;이향백;강창룡
    • 열처리공학회지
    • /
    • 제25권5호
    • /
    • pp.233-238
    • /
    • 2012
  • The effect of subzero treatment on the mechanical properties of cold rolled high manganese austenitic stainless steel was investagated. ${\alpha}$'-martensite was formed by cold rolling, and it was formed with surface relief and specific direction or crossing each other. The volume fraction of martensite increased by subzero treatment, and it was increased with longer time of subzero treatment and higher temperature of subzero treatment. The hardness and strength increased by subzero treatment, while the elongation decreased. With the increase of volume fraction of martensite, the hardness and strength was increased steeply with proportional relationship, elongation was decreased slowly. The results show that the hardness and strength was strongly controlled by the volume fraction of martensite, and the elongation was affected by transformation behavior of deformation induced martensite in the initial stage of deformation.

Effect of Particle Migration of the Characteristics of Microchannel Flow

  • Kim Y. W.;Jin S. W.;Kim S. W.;Yoo J. Y.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 Proceedings of 2004 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.119-124
    • /
    • 2004
  • Experimental study was conducted to characterize the flow effect of particle migration in a microchannel which can be used to deliver small amount of liquids, drugs, biological agents and particles in microfluidic devices. Fluorescent particles of $1\{mu}m$ diameter were used to obtain velocity profiles of the fluid in which large particles of $10\{mu}m$ diameter were suspended at different volume fraction of 0.6 and $0.8\%$. Measurements were obtained by using micro-PIV system which contains a Nd:YAG laser with a light of 532-nm wavelength, an inverted epi-fluorescent microscope and a cooled CCD camera to record particle images. The volume fraction of $\phi$ and the particle Reynolds number $Re_p$Rep were used as a parameter to assess the influence of the velocity profile of the suspensions. To expect the slip velocity between the particle and fluids, experiments were carried out at low volume fraction. It was shown that the velocity profile was not influenced by Rep but influenced by the volume fraction, which is in similar trend with the previous study.

  • PDF

베이나이트계 후판강의 모재 및 열영향부의 미세조직과 기계적 특성에 미치는 화학 조성의 영향 (Effect of Chemical Compositions on Microstructure and Mechanical Properties of Base Metal and HAZ of Bainitic Steel Plates)

  • 조성규;주형건;신상용
    • 한국재료학회지
    • /
    • 제29권4호
    • /
    • pp.211-220
    • /
    • 2019
  • In this study, three kinds of bainitic steel plates are manufactured by varying the chemical compositions and their microstructures are analyzed. Tensile and Charpy impact tests are performed at room and low temperature to investigate the correlation between microstructure and mechanical properties. In addition, heat affected zone (HAZ) specimens are fabricated by a simulation of welding processes, and the HAZ microstructure is analyzed. The base steel that has the lowest carbon equivalent has the highest volume fraction of acicular ferrite and the lowest volume fraction of secondary phases, so the strength is the lowest and the elongation is the highest. The Mo steel has a higher volume fraction of granular bainite and more secondary phases than the base steel, so the strength is high and the elongation is low. The CrNi steel has the highest volume fraction of the secondary phases, so the strength is the highest and elongation is the lowest. The tensile properties of the steels, namely, strength and elongation, have a linear correlation with the volume fraction of secondary phases. The Mo steel has the lowest Charpy impact energy at $-80^{\circ}C$ because of coarse granular bainite. In the Base-HAZ and Mo-HAZ specimens, the hardness increases as the volume fraction of martensite-austenite constituents increases. In the CrNi-HAZ specimen, however, hardness increases as the volume fraction of martensite and bainitic ferrite increases.

레이저 및 열전대를 이용한 동축류 확산화염에서의 매연입자 측정에 관한 연구 (A Study on the Soot Particle Measurement in Co-Flow Diffusion Flame Using a Laser Diagnostics and a Thermocouple)

  • 한용택;이기형;이원남
    • 대한기계학회논문집B
    • /
    • 제28권7호
    • /
    • pp.863-870
    • /
    • 2004
  • The temperature and soot particle measurement technique in a laminar diffusion flame has been studied to investigate the characteristics of soot particle with temperature using a co-flow burner. The temperature distribution in the flame were measured by rapid insertion of a R-type thermocouple and the soot particles by LEM/LIS techniques. In these measurement, soot volume fraction, number density and soot diameters were analyzed experimentally. As a results, the spacial distributions of particle volume fraction, soot diameter, and number density are mapped throughout the flame using the Rayleigh theory for the scattering of light by particles. A laser extinction method was used to measure the soot volume fraction and laser induced scattering method was used to measure the soot particle diameter and number density. Also, we measured temperature without the effect of soot particles attached to the thermocouple junction, which is close to the nozzle. In this result, we found that upstream zone has a unstable flowing in co-flow diffusion flame and the y-axis temperature of flame has a uniform temperature distribution in the most soot volume fraction zone.

레이저 및 열전대를 이용한 동축류 확산화염에서의 매연입자 측정에 관한 연구 (A Study on the Soot Particle Measurement in Co-flow Diffusion Flame Using a Laser Diagnostics and a Thermocouple)

  • 한용택;이기형;이원남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1267-1273
    • /
    • 2004
  • The temperature and soot particle measurement technique in a laminar diffusion flame have been studied to investigate the characteristics of soot particle with temperature using a co-flow burner. The temperature distributions in the flame were measured by rapid insertion of a R-type thermocouple and the soot particles were detected were detected by LEM/LIS techniques. In these measurement, soot volume fraction, number density and soot diameters were analyzed experimentally. As a results, the spacial distributions of particle volume fraction, soot diameter, and number density are mapped throughout the flame using the Rayleigh theory for the scattering of light by absorbing particles. A laser extinction method was used to measure the soot volume fraction and Laser induced scattering method was used to measure the soot particle diameter and number density. Also, we measured temperature without the effect of soot particles attached to the thermocouple junction, which is close to the nozzle. In this result, we found that upstream zone has a unstable flowing in co-flow diffusion flame and the y-axis temperature of flame has a uniform temperature distribution in the most soot volume fraction zone.

  • PDF

Evaluation of direct tensile strength for ultra-high-performance concrete using machine learning algorithms

  • Sanghee Kim;Woo-Young Lim
    • Computers and Concrete
    • /
    • 제34권3호
    • /
    • pp.367-378
    • /
    • 2024
  • This study evaluates the direct tensile strength of ultra-high-performance concrete (UHPC) using tests. A total of 45 dogbone-shaped specimens are tested, with the test variables being the fiber volume fraction and notch length. The test results showed that the material properties of UHPC were largely dependent on the fiber volume fraction and compressive strength. When steel fibers with more than 1% fiber volume fraction are mixed in the manufacturing of UHPC, the tensile strength can be more than twice that of plain UHPC. In addition, the incorporation of steel fibers enabled the significant improvement of the initial cracking strength. However, the effect of the notch length on the tensile behavior was insignificant. An assessment of the direct tensile strength is conducted using machine-learning algorithms (ML). For evaluation of the direct tensile strength of UHPC using ML, a total of 98 test data, including 53 data from other research works and 45 data from this experimental program, were collected. In total, 67 data with a 70% confidence interval on a normal distribution curve were selected, with 47 data among 67 used for ML training and 20 data used for ML testing. As a result, the machine-learning algorithm with a steel fiber volume fraction predicted that the tensile strength has an average of 0.98 and the lowest values of regression evaluation metrics among analytical and ML-based models. It is considered that an ML-based model can help to predict a more accurate tensile strength of UHPC.

Effect of Abnormal Grain Growth and Heat Treatment on Electrical Properties of Semiconducting BaTiO3Ceramics

  • Lee, Joon-Hyung;Cho, Sang-Hee
    • 한국세라믹학회지
    • /
    • 제39권1호
    • /
    • pp.21-25
    • /
    • 2002
  • Effect of abnormal grain growth and heat treatment time on the electrical properties of donor-doped semiconductive BaTiO$_3$ceramics was examined. La-doped BaTiO$_3$ceramics was sintered at 134$0^{\circ}C$ for different times from 10 to 600 min in order to change the volume fraction of the abnormal grains in samples. As a result, samples with different volume fraction of abnormal grain growth from 22 to 100% were prepared. The samples were annealed at 120$0^{\circ}C$ for various times. The resistivity of the sam-ples at room and above Curie temperature was examined. The complex impedance measurement as functions of the volume fraction of abnormal grains and annealing time was conducted. Separation of complex impedance semicircle was observed in a sample in which abnormal and fine grains coexist. The results are discussed from a viewpoint of microstructure-property relationship.

복합조직강의 미시조직변화가 피로파괴전파에 미치는 영향 (The Effects of the Microstructural Change of Dual Phase Steel on Fatigue Fracture Propagation)

  • 오세욱;김웅집
    • 한국해양공학회지
    • /
    • 제5권2호
    • /
    • pp.58-66
    • /
    • 1991
  • Not only difference of fatigue crack growth and propagation behavior resulted from the grain size, the hardness ratio and volume fraction in M.E.F. dual phase steel composed of martensite in hard phase and ferrite in soft phase, but also the effects of the plastic constraint were investigated by fracture mechanics and microstructural method. The main results obtained are as follows: 1) The fatigue endurance of M.E.F. steel increases with decreasing the grain size, increasing the ratio of hardness and volume fraction. 2) The initiation of slip and crack occures faster as the stress level goes higher. These phenomena result from the plastic constraint effect of the second phase. 3) The crack propagation rate in the constant stress level is faster as the grain size gets larger, the ratio of hardness lower and volume fraction smaller.

  • PDF

GF/PP 복합재료의 충격파괴거동에 대한 온도효과 (Temperature Effect on Impact Fracture Behavior of GF/PP Composites)

  • 고성위;엄윤성
    • 수산해양기술연구
    • /
    • 제41권1호
    • /
    • pp.78-84
    • /
    • 2005
  • The main goal of this work is to study the effects of temperature and volume fraction of fiber on the Charpy impact test with GF/PP composites. The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperature range of 60^{\circ}C$ to -50^{\circ}C$ by impact test. The critical fracture energy increased as the fiber volume fraction ratio increased. The critical fracture energy shows a maximum at ambient temperature and it tends to decreases as temperature goes up or goes down. Major failure mechanisms can be classified such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.