• 제목/요약/키워드: volume correction

Search Result 413, Processing Time 0.023 seconds

Evaluation of Dose and Position Compensation of Parotid Gland Using CT On-rail System in Head-and-Neck Cancer (두경부 암환자 치료 시 CT On-rail System을 이용한 이하선의 위치 보정 및 선량 평가)

  • Jang, Hyeong-Jun;Im, Chung-Geun;Chun, Geum-Sung;Jeong, Il-Seon;Kim, Hoi-Nam
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.2
    • /
    • pp.83-89
    • /
    • 2008
  • Purpose: The checking method of target and normal structure are used by MVCBCT, KVCBCT, CT On-rail System, Ultrasound in H&N cancer patient. In case of MVCT, the utilization of bone structure is valuable to check around tissue. But the utilization of soft tissue is not enough. The point of this paper is dose variation in movable parotid and changeable volume of H&N cancer patient of CT On-rail System. Materials and Methods: The object of H&N cancer patient is 5 in this hospital. The selected patient are scanned ARTISTE CT Vision (CT On-ral System) a triweekly. After CT scanning, tranfered coordinates are obtained by movable of parotid gland comparison with planning image. Checking for the changeable volume of parotid gland. A Obtained CT image are tranfered to the RTP System. So dose variation are checked by following changed volume. Results: The changes of target coordinate by the parotid gland movement are X: -0.4~0.4 cm, Y: -0.4~0.3 cm, Z: -0.3~0.3 cm. the volume of GTV is decreased to about 7.11%/week and then both parotid gland volume are shrinked about 4.81%/week (Lt), 2.91%/week (Rt). At the same time, each parotid gland are diminished in radiation dose as 3.66%/week (Lt), 2.01%/week. Conclusion: Images from CT on the rail System which are able to aquire the better quality images of soft tissue in Target area than MVCBCT. After replanning and dose redistribution by required images, It could gain not only the correction of the patient set-tup errors but exact dose distribution. Accordingly, the delivery of compensated dose, It makes that we could do Adaptive Targeting Radiotherapy and need Real Time Adaptive Targeting Radiotherapy by reduce beam delivary time.

  • PDF

Comparison of Three- and Four-dimensional Robotic Radiotherapy Treatment Plans for Lung Cancers (폐암환자의 종양추적 정위방사선치료를 위한 삼차원 및 사차원 방사선치료계획의 비교)

  • Chai, Gyu-Young;Lim, Young-Kyung;Kang, Ki-Mun;Jeong, Bae-Gwon;Ha, In-Bong;Park, Kyung-Bum;Jung, Jin-Myung;Kim, Dong-Wook
    • Radiation Oncology Journal
    • /
    • v.28 no.4
    • /
    • pp.238-248
    • /
    • 2010
  • Purpose: To compare the dose distributions between three-dimensional (3D) and four-dimensional (4D) radiation treatment plans calculated by Ray-tracing or the Monte Carlo algorithm, and to highlight the difference of dose calculation between two algorithms for lung heterogeneity correction in lung cancers. Materials and Methods: Prospectively gated 4D CTs in seven patients were obtained with a Brilliance CT64-Channel scanner along with a respiratory bellows gating device. After 4D treatment planning with the Ray Tracing algorithm in Multiplan 3.5.1, a CyberKnife stereotactic radiotherapy planning system, 3D Ray Tracing, 3D and 4D Monte Carlo dose calculations were performed under the same beam conditions (same number, directions, monitor units of beams). The 3D plan was performed in a primary CT image setting corresponding to middle phase expiration (50%). Relative dose coverage, D95 of gross tumor volume and planning target volume, maximum doses of tumor, and the spinal cord were compared for each plan, taking into consideration the tumor location. Results: According to the Monte Carlo calculations, mean tumor volume coverage of the 4D plans was 4.4% higher than the 3D plans when tumors were located in the lower lobes of the lung, but were 4.6% lower when tumors were located in the upper lobes of the lung. Similarly, the D95 of 4D plans was 4.8% higher than 3D plans when tumors were located in the lower lobes of lung, but was 1.7% lower when tumors were located in the upper lobes of lung. This tendency was also observed at the maximum dose of the spinal cord. Lastly, a 30% reduction in the PTV volume coverage was observed for the Monte Carlo calculation compared with the Ray-tracing calculation. Conclusion: 3D and 4D robotic radiotherapy treatment plans for lung cancers were compared according to a dosimetric viewpoint for a tumor and the spinal cord. The difference of tumor dose distributions between 3D and 4D treatment plans was only significant when large tumor movement and deformation was suspected. Therefore, 4D treatment planning is only necessary for large tumor motion and deformation. However, a Monte Carlo calculation is always necessary, independent of tumor motion in the lung.

Development of Dose Planning System for Brachytherapy with High Dose Rate Using Ir-192 Source (고선량률 강내조사선원을 이용한 근접조사선량계획전산화 개발)

  • Choi Tae Jin;Yei Ji Won;Kim Jin Hee;Kim OK;Lee Ho Joon;Han Hyun Soo
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.283-293
    • /
    • 2002
  • Purpose : A PC based brachytherapy planning system was developed to display dose distributions on simulation images by 2D isodose curve including the dose profiles, dose-volume histogram and 30 dose distributions. Materials and Methods : Brachytherapy dose planning software was developed especially for the Ir-192 source, which had been developed by KAERI as a substitute for the Co-60 source. The dose computation was achieved by searching for a pre-computed dose matrix which was tabulated as a function of radial and axial distance from a source. In the computation process, the effects of the tissue scattering correction factor and anisotropic dose distributions were included. The computed dose distributions were displayed in 2D film image including the profile dose, 3D isodose curves with wire frame forms and dosevolume histogram. Results : The brachytherapy dose plan was initiated by obtaining source positions on the principal plane of the source axis. The dose distributions in tissue were computed on a $200\times200\;(mm^2)$ plane on which the source axis was located at the center of the plane. The point doses along the longitudinal axis of the source were $4.5\~9.0\%$ smaller than those on the radial axis of the plane, due to the anisotropy created by the cylindrical shape of the source. When compared to manual calculation, the point doses showed $1\~5\%$ discrepancies from the benchmarking plan. The 2D dose distributions of different planes were matched to the same administered isodose level in order to analyze the shape of the optimized dose level. The accumulated dose-volume histogram, displayed as a function of the percentage volume of administered minimum dose level, was used to guide the volume analysis. Conclusion : This study evaluated the developed computerized dose planning system of brachytherapy. The dose distribution was displayed on the coronal, sagittal and axial planes with the dose histogram. The accumulated DVH and 3D dose distributions provided by the developed system may be useful tools for dose analysis in comparison with orthogonal dose planning.

A Fast and Simple Synthesizing Method of $^{18}F$-Flumazenil as Derivative Benzodiazepine Receptor for Epilepsy PET Imaging (간질 PET영상을 위한 플루마제닐(벤조디아제핀 수용체)유도체의 신속하고 간단한 합성방법 소개)

  • Cho, Yong-Hyun;Kim, Hyung-Woo;Hwang, Ki-Young;Lim, Jin-Koon;Lee, Hong-Jae;Woo, Jae-Ryong;Kim, Hyun-Ju
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.3
    • /
    • pp.176-180
    • /
    • 2008
  • Department of Nuclear Medicine in Seoul National University Hospital (SNUH) had developed $^{18}F$-Flumazenil as Benzodiazepine receptor imaging agent for PET diagnosis of Epilepsy. But production Activity of $^{18}F$-Flumazenil is decreased owing to this method has difficult synthesis procedures and pretty long synthesis time. In this study, we can modify synthesizing method to have more simple procedure and less spend time and help to increase production Activity. Old method: Radioactivity was produced by cyclotron was captured by QMA cartridge that was activated. Captured radioactivity was eluted into the reaction vial by using kryptofix solution and delivered. After evaporation of eluent, the azeotrophic drying step repeated two times. tosylflumazenil in anhydrous Acetonitrile was added to a reaction vial while bubbling. The reaction mixture was evaporated until the mixture volume was 0.5 mL. Reaction vial washed with 20 % Acetonitrile and that solution went into the reaction vial. The reaction mixture was loaded to the HPLC loop by hand and purified $^{18}F$-Flumazenil by HPLC column. New method: We used $TBAHCO_3$ solution as a eluent. After the eluent was evaporated, tosylflumazenil in anhydrous acetonitrile was added to a reaction vial and the reaction mixture was bubbled for 15 minutes. It was evaporated until the mixture volume became 0.5 mL. It was loaded to the HPLC loop. In old method, $^{18}F$-Flumazenil was synthesized via 6 steps synthesis procedures in 105 minutes with 30~35% synthesizing yield (non-decay correction) and specific activity was about $0.5{\sim}2{\times}10^5$ Ci/mole. In new method, It had 3 steps synthesis procedures in 53 minutes with 40~45% synthesizing yield and specific activity was about $3{\sim}8{\times}10^5$ Ci/mole. This method leads to improve of minimizing synthesis time, increasing synthesis yield and specific activity. While we can load reaction mixture to the HPLC loop, we can expose high radiation field thanks to used by hand.

  • PDF

Analysis and Design of a DC-Side Symmetrical Class-D ZCS Rectifier for the PFC of Lighting Applications

  • Ekkaravarodome, Chainarin;Thounthong, Phatiphat;Jirasereeamornkul, Kamon;Higuchi, Kohji
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.621-633
    • /
    • 2015
  • This paper proposes the analysis and design of a DC-side symmetrical zero-current-switching (ZCS) Class-D current-source driven resonant rectifier to improve the low power-factor and high line current harmonic distortion of lighting applications. An analysis of the junction capacitance effect of Class-D ZCS rectifier diodes, which has a significant impact on line current harmonic distortion, is discussed in this paper. The design procedure is based on the principle of the symmetrical Class-D ZCS rectifier, which ensures more accurate results and provides a more systematic and feasible analysis methodology. Improvement in the power quality is achieved by using the output characteristics of the DC-side Class-D ZCS rectifier, which is inserted between the front-end bridge-rectifier and the bulk-filter capacitor. By using this symmetrical topology, the conduction angle of the bridge-rectifier diode current is increased and the low line harmonic distortion and power-factor near unity were naturally achieved. The peak and ripple values of the line current are also reduced, which allows for a reduced filter-inductor volume of the electromagnetic interference (EMI) filter. In addition, low-cost standard-recovery diodes can be employed as a bridge-rectifier. The validity of the theoretical analysis is confirmed by simulation and experimental results.

Simple Correction of Alar Retraction by Conchal Cartilage Extension Grafts

  • Jang, Yong Jun;Kim, Sung Min;Lew, Dae Hyun;Song, Seung Yong
    • Archives of Plastic Surgery
    • /
    • v.43 no.6
    • /
    • pp.564-569
    • /
    • 2016
  • Background Alar retraction is a challenging condition in rhinoplasty marked by exaggerated nostril exposure and awkwardness. Although various methods for correcting alar retraction have been introduced, none is without drawbacks. Herein, we report a simple procedure that is both effective and safe for correcting alar retraction using only conchal cartilage grafting. Methods Between August 2007 and August 2009, 18 patients underwent conchal cartilage extension grafting to correct alar retraction. Conchal cartilage extension grafts were fixed to the caudal margins of the lateral crura and covered with vestibular skin advancement flaps. Preoperative and postoperative photographs were reviewed and analyzed. Patient satisfaction was surveyed and categorized into 4 groups (very satisfied, satisfied, moderate, or unsatisfied). Results According to the survey, 8 patients were very satisfied, 9 were satisfied, and 1 considered the outcome moderate, resulting in satisfaction for most patients. The average distance from the alar rim to the long axis of the nostril was reduced by 1.4 mm (3.6 to 2.2 mm). There were no complications, except in 2 cases with palpable cartilage step-off that resolved without any aesthetic problems. Conclusions Conchal cartilage alar extension graft is a simple, effective method of correcting alar retraction that can be combined with aesthetic rhinoplasty conveniently, utilizing conchal cartilage, which is the most similar cartilage to alar cartilage, and requiring a lesser volume of cartilage harvest compared to previously devised methods. However, the current procedure lacks efficacy for severe alar retraction and a longer follow-up period may be required to substantiate the enduring efficacy of the current procedure.

The Cost-effective Eletronic ballast for Metal halide Lamp using DSP (DSP를 이용한 비용 절감형 메탈할라이드 램프용 전자식 안정기)

  • Han, Sang-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.108-112
    • /
    • 2017
  • High-intensity-discharge lamps are widely utilized in outdoor and indoor lighting circumstances that need high luminance. In lighting applications for MHD lamps, the size of the lamp ballast circuit is an important factor and should be as small as possible. The electronic ballast for MHD lamps is superior to the electromagnetic(EM) ballast in that it saves energy, and has smaller volume and lighter weight. In this paper, highly efficient cost-effective and small sized electronic ballast for Metal Halide Lamp with high power factor using Digital Signal Processor are proposed. The proposed electronic ballast for MHD lamps combines a boost PFC converter with a half-bridge inverter, the algorithms of the power factor correction and ballast control were implemented using the TI's TMS320LF2406 CPU. Experimental results validate the ballast is also useful and reasonably suggested.

A refined quasi-3D hybrid-type higher order shear deformation theory for bending and Free vibration analysis of advanced composites beams

  • Meradjah, Mustapha;Bouakkaz, Khaled;Zaoui, Fatima Zohra;Tounsi, Abdelouahed
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.269-282
    • /
    • 2018
  • In this paper, a new displacement field based on quasi-3D hybrid-type higher order shear deformation theory is developed to analyze the static and dynamic response of exponential (E), power-law (P) and sigmoïd (S) functionally graded beams. Novelty of this theory is that involve just three unknowns with including stretching effect, as opposed to four or even greater numbers in other shear and normal deformation theories. It also accounts for a parabolic distribution of the transverse shear stresses across the thickness, and satisfies the zero traction boundary conditions at beams surfaces without introducing a shear correction factor. The beam governing equations and boundary conditions are determined by employing the Hamilton's principle. Navier-type analytical solutions of bending and free vibration analysis are provided for simply supported beams subjected to uniform distribution loads. The effect of the sigmoid, exponent and power-law volume fraction, the thickness stretching and the material length scale parameter on the deflection, stresses and natural frequencies are discussed in tabular and graphical forms. The obtained results are compared with previously published results to verify the performance of this theory. It was clearly shown that this theory is not only accurate and efficient but almost comparable to other higher order shear deformation theories that contain more number of unknowns.

Effect of Scapular Brace on the Pulmonary Function and Foot Pressure of Elderly Women with Forward Head Posture

  • Kim, Eun-Kyung;Lee, Dong-Kyu
    • The Journal of Korean Physical Therapy
    • /
    • v.30 no.4
    • /
    • pp.141-145
    • /
    • 2018
  • Purpose: Changes in the curvature of the vertebral columns of elderly women with increasing age causes various side effects and disorders. Therefore, this study was conducted to evaluate the effectiveness of the 8-figure scapular brace to improve pulmonary function and balance ability based on lung capacity and foot pressure by increasing the vertebral curvature. Methods: Seventeen elderly women with a forward head posture were selected. Women were asked to wear the 8-figure scapular brace and the forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) were measured, as were changes in foot pressure. Measurements were conducted three times each and the mean values were used for subsequent analyses. For static evaluation, we used the paired t-test to identify differences between pre and post values. Results: There was no significant difference in FEV1 and FVC before and after use of the brace (p>0.05); however, there was a significant decrease in forefoot pressure and an increase in rearfoot pressure following application of the brace (p<0.05). Conclusion: Application of the 8-figure scapular brace to correct vertebral curvature in elderly women influenced pressure distribution change from immediate effect body arrange of cervical and thoracic. However, wearing the 8-figure scapular brace may interfere with expansion of the chest and therefore respiratory muscle activity. Accordingly, it is necessary to apply appropriate treatment when wearing a scapular brace and to allow a sufficient intervention period while also providing therapeutic interventions such as posture correction or respiration training.

Perturbation of Dose Distributions for Air Cavities in Tissue by High Energy Electron (고(高) 에너지 전자선(電子線) 치료시(治療時) 체내(體內) 공동(空洞)으로 인(因)한 선량분포(線量分布)의 변동(變動))

  • Chu, S.S.;Lee, D.H.;Choi, B.S.
    • Journal of Radiation Protection and Research
    • /
    • v.1 no.1
    • /
    • pp.22-30
    • /
    • 1976
  • The perturbation of dose distribution adjacent to cavities in high energy electron has shown that the percentage of dose increase varies markedly as a function of the build-up layer, the length and thickness of the cavities, and the electron energy. The dose distribution showed that cavities similar in size to those encountered in the head and neck measured by industrial film dosimetry and corrected by ionization chambers. The most increased doses by measuring are resulted in a localized dose of up to 130% of that measured at the depth of maximum dose within a homogeneous tissue equivalent phantom. The measured values and correction factors of dose perturbation due to air cavities showed in diagrams and would be summarized as follows. 1. In $8{\sim}12MeV$ electron beams, the most marked dose is observed when the build-up layer thickness is 0.5cm and cavity volume is $2{\times}2{\times}2cm^3$. 2. The highest dose point is located under cavity when the energy is increased and cavity length is longer. 3. The cavity length at which the maximum percentage dose occurs decreases with increasing energy. 4. The highest percentage cavity doses are obtained when the energy is high, the build-up layer is thin, the thickness of the cavity is large, and the length of the cavity is approximately 1 to 3cm. 5. The doses of upper portion of cavity are less than the standard dose distribution as 5 to 10%. 6. The maximum range of electron beam are extended as much as thickness of cavity. 7. A cavity having a length of 5cm closely approximates a cavity of infinite length.

  • PDF