• Title/Summary/Keyword: voltage-controlled current source

Search Result 225, Processing Time 0.023 seconds

Structure and Control of Smart Transformer with Single-Phase Three-Level H-Bridge Cascade Converter for Railway Traction System (Three-Level H-Bridge 컨버터를 이용한 철도차량용 지능형 변압기의 구조 및 제어)

  • Kim, Sungmin;Lee, Seung-Hwan;Kim, Myung-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.617-628
    • /
    • 2016
  • This paper proposes the structure of a smart transformer to improve the performance of the 60Hz main power transformer for rolling stock. The proposed smart transformer is a kind of solid state transformer that consists of semiconductor switching devices and high frequency transformers. This smart transformer would have smaller size than the conventional 60Hz main transformer for rolling stock, making it possible to operate AC electrified track efficiently by power factor control. The proposed structure employs a cascade H-Bridge converter to interface with the high voltage AC single phase grid as the rectifier part. Each H-Bridge converter in the rectifier part is connected by a Dual-Active-Bridge (DAB) converter to generate an isolated low voltage DC output source of the system. Because the AC voltage in the train system is a kind of medium voltage, the number of the modules would be several tens. To control the entire smart transformer, the inner DC voltage of the modules, the AC input current, and the output DC voltage must be controlled instantaneously. In this paper, a control algorithm to operate the proposed structure is suggested and confirmed through computer simulation.

Comparison of PI and PR Controller Based Current Control Schemes for Single-Phase Grid-Connected PV Inverter (단상 계통 연계형 태양광 인버터에 사용되는 PI 와 PR 전류제어기의 비교 분석)

  • Vu, Trung-Kien;Seong, Se-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2968-2974
    • /
    • 2010
  • Nowadays, the PV systems have been focused on the grid connection between the power source and the grid. The PV inverter can be considered as the core of the whole system because of an important role in the grid-interfacing operation. An important issue in the inverter control is the load current regulation. In the literature, Proportional Integral (PI) controller, which is normally used in the current-controlled Voltage Source Inverter (VSI), cannot be a satisfactory controller for an AC system because of the steady-sate error and the poor disturbance rejection, especially in high-frequency range. Compared with conventional PI controller, Proportional Resonant (PR) controller can introduce an infinite gain at the fundamental frequency of the AC source; hence it can achieve the zero steady-state error without requiring the complex transformation and the de-coupling technique. Theoretical analyses of both PI and PR controller are presented and verified by simulation and experiment. Both controller are implemented in a 32-bit fixed-point TMS320F2812 DSP processor and evaluated on a 3kW experimental prototype PV Power Conditioning System (PCS). Simulation and experimental results are shown to verify the controller performances.

A Study about Analysis of Weld Distortion using Genetic Algorithm (유전적 알고리듬을 이용한 용접변형 해석에 관한 연구)

  • Kim, Ill-Soo;Kim, Hak-Hyoung;Jang, Han-Kee;Kim, Hee-Jin;Kwak, Sung-Kyu;Ryoo, Hoi-Soo;Shim, Ji-Yeon
    • Journal of Welding and Joining
    • /
    • v.27 no.4
    • /
    • pp.54-59
    • /
    • 2009
  • In the process to manufacture for metallic structures, control of welding deformation is one of an important problems connected with reliability of the manufactured structures so that welding deformation should be measured and controlled with quickly and actively. Also, welding parameters which have as lot of effects on welding deformation such as arc voltage, welding current and welding speed can also be controlled. The objectives for this study were to develop a simple 2-D FEM to calculate not only the transient thermal histories but also the sizes of fusion and heat-affected zone (HAZ) in multi pass arc welds including the butt and fillet weld type with dissimilar thickness, and to concentrate on a developed model for the finding the parameters of Godak's moving heat source model based on a GA. The developed model includes a GA program using MATLB and GA toolbox, and a batch mode thermal model using ANSYS software. Not only the thermal model was verified by comparison with Goldak's work but also the developed model was validated with molten zone section experimental data.

Design of the Rain Sensor using a Coaxial Cavity Resonator (동축 공동 공진기를 이용한 물방울 감지 센서 설계에 관한 연구)

  • Lee, Yun-Min;Kim, Jin-Kook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.223-228
    • /
    • 2018
  • In this paper the water sensor using a coaxial cavity resonator is designed and manufactured. The water sensor which can sense water drop linearly has been constructed with voltage controlled oscillator(VCO), coaxial cavity resonator, RF switch, RF detector, A/D converter, DAC and micro controller. The operating frequency range of the designed water sensor is from 2.5GHz to 3.2GHz and the input voltage and current source are 24[V/DC] and 1[A]. The designed sensor circuit includes VCO, RF switch, RF detector which varies the frequency characteristics of the devices in the high frequency of 3GHz. And so we should correct the error of the frequency characteristics of those devices in the sensor circuit. To do this, we make the reference path which switches the signals to the RF detector directly without sending it to the resonator. According to the result of simulation and measurement, we can see that there is 0-50MHz difference between simulated resonator frequency and manufactured resonator frequency.

Fabrication, Mesurement and Evaluation of Silicon-Gate n-well CMOS Devices (실리콘 게이트 n-well CMOS 소자의 제작, 측정 및 평가)

  • Ryu, Jong-Seon;Kim, Gwang-Su;Kim, Bo-U
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.5
    • /
    • pp.46-54
    • /
    • 1984
  • A silicon-gate n-well CMOS process with 3 $\mu$m gate length was developed and its possibility for the applications was discussed,. Threshold voltage was easily controlled by ion implantation and 3-$\mu$m gate length with 650 $\AA$ oxide shows ignorable short channel effect. Large value of Al-n+ contact resistance is one of the problems in fabrications of VLSI circuits. Transfer characteristics of CMOS inverter is fairly good and the propagation delay time per stage in ring oscillator with layout of (W/L) PMOS /(W/L) NMOS =(10/5)/(5/5) is about 3.4 nsec. catch-up occurs on substrate current of 3-5 mA in this process and critically dependent on the well doping density and nt-source to n-well space. Therefore, research, more on latch-up characteristics as a function of n-well profile and design rule, especially n+-source to n-well space, is required.

  • PDF

PR Controller Based Current Control Scheme for Single-Phase Inter-Connected PV Inverter (PR제어기를 이용한 단상 계통 연계형 태양광 인버터 설계)

  • Vu, Trung-Kien;Seong, Se-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3587-3593
    • /
    • 2009
  • Nowadays, the PV systems have been focused on the interconnection between the power source and the grid. The PV inverter, either single-phase or three-phase, can be considered as the core of the whole system because of an important role in the grid-interconnecting operation. An important issue in the inverter control is the load current regulation. In the literature, the Proportional+Integral (PI) controller, normally used in the current-controlled Voltage Source Inverter (VSI), cannot be a satisfactory controller for an ac system because of the steady-sate error and the poor disturbance rejection, especially in high-frequency range. By comparison with the PI controller, the Proportional+Resonant (PR) controller can introduce an infinite gain at the fundamental ac frequency; hence can achieve the zero steady-state error without requiring the complex transformation and the dq-coupling technique. In this paper, a PR controller is designed and adopted for replacing the PI controller. Based on the theoretical analyses, the PR controller based control strategy is implemented in a 32-bit fixed-point TMS320F2812 DSP and evaluated in a 3kW experimental prototype Photovoltaic (PV) power conditioning system (PCS). Simulation and experimental results are shown to verify the performance of implemented control scheme in PV PCS.

Circuit Modeling and Simulation of Active Controlled Field Emitter Array for Display Application (디스플레이 응용을 위한 능동 제어형 전계 에미터 어레이의 회로 모델링 및 시뮬레이션)

  • Lee, Yun-Gyeong;Song, Yun-Ho;Yu, Hyeong-Jun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.2
    • /
    • pp.114-121
    • /
    • 2001
  • A circuit model for active-controlled field emitter array(ACFEA) as an electron source of active-controlled field emission display(ACFED) has been proposed. The ACFEA with hydrogenated amorphous silicon thin-film transistor(a-Si:H TFT) and Spindt-type molibdenum tips (Spindt-Mo FEA) has been fabricated monolithically on the same glass. A-Si:H TFT is used as a control device of field emitters, resulting in stabilizing emission current and lowering driving voltage. The basic model parameters extracted from the electrical characteristics of the fabricated a-Si:H TFT and Spindt-Mo FEA were implemented into the ACFEA model with a circuit simulator SPICE. The accuracy of the equivalent circuit model was verified by comparing the simulated results with the measured one through DC analysis of the ACFEA. The transient analysis of the ACFEA showed that the gate capacitance of FEA along with the drivability of TFT strongly affected the response time. With the fabricated ACFEA, we obtained a response time of 15$mutextrm{s}$, which was enough to make 4bit/color gray scale with the pulse width modulation (PWM).

  • PDF

Long-Lasting and Highly Efficient TRIAC Dimming LED Driver with a Variable Switched Capacitor

  • Lee, Eun-Soo;Choi, Bo-Hwan;Nguyen, Duy Tan;Choi, Byeung-Guk;Rim, Chun-Taek
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1268-1276
    • /
    • 2016
  • A triode for alternating current (TRIAC) dimming light emitting diode (LED) driver, which adopts a variable switched capacitor for LED dimming and LED power regulation, is proposed in this paper. The proposed LED driver is power efficient, reliable, and long lasting because of the TRIAC switch that serves as its main switch. Similar to previous TRIAC dimmers for lamps, turn-on timing of a TRIAC switch can be controlled by a volume resistor, which modulates the equivalent capacitance of the proposed variable switched capacitor. Thus, LED power regulation against source voltage variation and LED dimming control can be achieved by the proposed LED driver while meeting the global standards for power factor (PF) and total harmonic distortion (THD). The long life and high power efficiency of the proposed LED driver make it appropriate for industrial lighting applications, such as those for streets, factories, parking garages, and emergency stairs. The detailed analysis of the proposed LED driver and its design procedure are presented in this paper. A prototype of 80 W was fabricated and verified by experiments, which showed that the efficiency, PF, and THD at Vs = 220 V are 93.8%, 0.95, and 22.5%, respectively; 65 W of LED dimming control was achieved with the volume resistor, and the LED power variation was well mitigated below 3.75% for 190 V < Vs < 250 V.

A Development of Intelligent Controller for Phase Control in Main Circuit Breaker (주회로차단기 투입전원 위상제어를 위한 지능형 제어기 개발)

  • Oh, Yong-Kuk;Kim, Jae-Won;Ryu, Joon-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.755-761
    • /
    • 2017
  • In railways powered by AC power, the main circuit breaker (MCB) is used for supplying the electric power to the catenary of the vehicle. Generally, the main circuit breaker is located between the pantograph and the main transformer, and the phase of the power applied to the vehicle changes according to the operation timing of the main circuit breaker. The operation of the main circuit breaker should be actively controlled according to the phase of the power source, since the phase of the power causes unintended transient states in the vehicle's electrical system in the form of an inrush current and surge voltage. However, the MCB has a delay time when it operates which is not constant. Therefore, an intelligent controller is needed to predict the operation delay time and control the opening and closing of the MCB.

Characterization of Structure and Electrical Properties of $TiO_2$Thin Films Deposited by MOCVD (화학기상증착법에 의한$TiO_2$박막의 구조 및 전기적 특성에 관한 연구)

  • Choe, Sang-Jun;Lee, Yong-Ui;Jo, Hae-Seok;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.3-11
    • /
    • 1995
  • $(TiO_{2})$ thin films were deposited on p-Si(100) substrate by APMOCVD using titanium isopropoxide as a source material. The deposition mechanism was well explained by the simple boundary layer theory and the apparent activation energy of the chemical reaction controlled process was 18.2kcal /mol. The asdeposited films were polycrystalline anatase phase and were transformed into rutile phase after postannealing. The postannealing time and the film thikness as well as the postannealing temperature also affected the phase transition. The C-V plot exhibited typical charateristics of MOS diode, from which the dielectric constant of about 80 was obtained. The capacitance of the annealed film was decreased but those of the Nb or Sr doped films were not changed. I-V characteristics revealed that the conduction mechanism was hopping conduction. The postannealing and the doping of Nb or Sr cause to decrease the leakage current and to increase the breakdown voltage.

  • PDF