• Title/Summary/Keyword: voltage ripple

Search Result 738, Processing Time 0.02 seconds

Stacked Interleaved Buck DC-DC Converter With 50MHz Switching Frequency (Stacked Interleaved 방식의 50MHz 스위칭 주파수의 벅 변환기)

  • Kim, Young-Jae;Nam, Hyun-Seok;Ahn, Young-Kook;Roh, Jeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.6
    • /
    • pp.16-24
    • /
    • 2009
  • In this paper, DC-DC buck converter with on-chip filter inductor and capacitor is presented. By operating at high switching frequency of 50MHz with stacked interleaved topology, we reduced inductor and capacitor sizes compared to previously published DC-DC buck converters. The proposed circuit is designed in a standard $0.5{\mu}m$ CMOS process, and chip area is $9mm^2$. This circuit operated at the input voltage of $3{\sim}5V$ range, the maximum load current of 250mA, and the maximum efficiency of 71%.

The high Efficiency Ballast for MHD Lamp with a Frequency Controlled Synchronous Rectifier (주파수 가변 동기 정류기를 이용한 고효율 MHD 램프 안정기)

  • Hyun B.C.;Lee I.K.;Cho B.H.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.356-362
    • /
    • 2005
  • In this paper, in order to develop a simple and high efficient ballast without an external ignitor, a half-bridge type ballast with a coupled inductor and a frequency controlled synchronous rectifier is proposed. The Internal LC resonance of the buck converter is used to generate a high voltage pulse for the ignition, and the coupled inductor filter is used for steady state ripple cancellation. Also, a synchronous buck converter is applied for the DC/DC converter stage. In order to improve the efficiency of the ballast, a frequency control method is proposed. This scheme reduces a circulation current and trun off loss of the MOSFET switch on the constant power operation, which results in increase of the efficiency of the ballast system about 4$\%$, compared to a fixed frequency control. It consists a 2-stage version ballast with a PFC circuit. The results are verified nth hardware experiments.

Modified Direct Torque Control using Algorithm Control of Stator Flux Estimation and Space Vector Modulation Based on Fuzzy Logic Control for Achieving High Performance from Induction Motors

  • Rashag, Hassan Farhan;Koh, S.P.;Abdalla, Ahmed N.;Tan, Nadia M.L.;Chong, K.H.
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.369-380
    • /
    • 2013
  • Direct torque control based on space vector modulation (SVM-DTC) protects the DTC transient merits. Furthermore, it creates better quality steady-state performance in a wide speed range. The modified method of DTC using SVM improves the electrical magnitudes of asynchronous machines, such as minimizing the stator current distortions, the stator flux with electromagnetic torque without ripple, the fast response of the rotor speed, and the constant switching frequency. In this paper, the proposed method is based on two new control strategies for direct torque control with space vector modulation. First, fuzzy logic control is used instead of the PI torque and a PI flux controller to minimizing the torque error and to achieve a constant switching frequency. The voltages in the direct and quadratic reference frame ($V_d$, $V_q$) are achieved by fuzzy logic control. In this scheme, the switching capability of the inverter is fully utilized, which improves the system performance. Second, the close loop of stator flux estimation based on the voltage model and a low pass filter is used to counteract the drawbacks in the open loop of the stator flux such as the problems saturation and dc drift. The response of this new control strategy is compared with DTC-SVM. The experimental and simulation results demonstrate that the proposed control topology outperforms the conventional DTC-SVM in terms of system robustness and eliminating the bad outcome of dc-offset.

A Study on LCL Filter Design and EMTP-RV Simulation for Grid-connected Three Phase Inverter (계통 연계 3상 인버터를 위한 LCL 필터 설계 및 EMTP-RV 시뮬레이션 연구)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.261-270
    • /
    • 2021
  • In this study, the design methodology of LCL filter for grid-connected three-phase inverter was studied. First, the advantages and disadvantages of applying typical filter structures as a filter for grid connection of a three-phase inverter were analyzed. Next, filter design methodologies for grid connection of a three-phase inverter were analyzed, and an effective filter design methodology was determined to satisfy the harmonic requirements in grid connection. In order to verify the effectiveness of the design methodology, EMTP models such as a three-phase inverter, a three-phase LCL filter, and a performance evaluation system to evaluate the performance of the designed filter were developed using EMTP-RV. Next, an LCL filter was designed for an application example of a three-phase inverter, and the waveforms of the output voltage and outage current of the three-phase inverter were checked through EMTP-RV simulation work. In particular, the validity of the design methodology was verified by confirming that the magnitude of the current ripple was reduced to a limited magnitude through waveform analysis of the output current.

A Low Area and High Efficiency SMPS with a PWM Generator Based on a Pseudo Relaxation-Oscillating Technique (Pseudo Relaxation-Oscillating 기법의 PWM 발생기를 이용한 저면적, 고효율 SMPS)

  • Lim, Ji-Hoon;Wee, Jae-Kyung;Song, Inchae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.70-77
    • /
    • 2013
  • We suggest a low area and high efficiency switched-mode power supply (SMPS) with a pulse width modulation (PWM) generator based on a pseudo relaxation-oscillating technique. In the proposed circuit, the PWM duty ratio is determined by the voltage slope control of an internal capacitor according to amount of charging current in a PWM generator. Compared to conventional SMPSs, the proposed control method consists of a simple structure without the filter circuits needed for an analog-controlled SMPS or the digital compensator used by a digitally-controlled SMPS. The proposed circuit is able to operate at switching frequency of 1MHz~10MHz, as this frequency can be controlled from the selection of one of the internal capacitors in a PWM generator. The maximum current of the core circuit is 2.7 mA, and the total current of the entire circuit including output buffer driver is 15 mA at 10 MHz switching frequency. The proposed SMPS has a simulated maximum ripple voltage of 7mV. In this paper, to verify the operation of the proposed circuit, we performed simulation using Dongbu Hitek BCD $0.35{\mu}m$ technology and measured the proposed circuit.

Design of a wind turbine generator with low cogging torque by using evolution strategy (진화론적 알고리즘을 이용한 코깅토크가 적은 풍력발전기의 설계)

  • Park, Ju-Gyeong;Cha, Guee-Soo;Lee, Hee-Joon;Kim, Yong-Sub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.755-760
    • /
    • 2016
  • The demand for independent generators using renewable energy has been increasing. Among those independent generators, small wind turbine generators have been actively developed. Permanent magnets are generally used for small wind turbine generators to realize a simple structure and small volume. On the other hand, cogging torque is included due to the structure of the permanent magnet synchronous machine, which can be the source of noise and vibration. The cogging torque can be varied by the shape of the permanent magnet and core, and it can be reduced using the appropriate design techniques. This paper proposes a design technique that can reduce the cogging torque by changing the shape of the permanent magnets for SPMSM (Surface Permanent Magnet Synchronous Motor), which is used widely for small wind turbine generators. Evolution Strategy, which is one of non-deterministic optimization techniques, was adopted to find the optimal shape of the permanent magnets that can reduce the cogging torque. The angle and outer diameter of permanent magnet were set as the design variable. A 300W class wind turbine generator, whose pole/slot combination was 8 poles/18 slots, was designed with the proposed design technique. The properties of the generator, including the cogging torque and output voltage, were calculated. The calculation results showed that the cogging torque of the optimized model was reduced compared to that of the initial model. The design technique proposed by this paper can be an effective measure to reduce the cogging torque.

Control and Analysis of an Integrated Bidirectional DC/AC and DC/DC Converters for Plug-In Hybrid Electric Vehicle Applications

  • Hegazy, Omar;Van Mierlo, Joeri;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.408-417
    • /
    • 2011
  • The plug-in hybrid electric vehicles (PHEVs) are specialized hybrid electric vehicles that have the potential to obtain enough energy for average daily commuting from batteries. The PHEV battery would be recharged from the power grid at home or at work and would thus allow for a reduction in the overall fuel consumption. This paper proposes an integrated power electronics interface for PHEVs, which consists of a novel Eight-Switch Inverter (ESI) and an interleaved DC/DC converter, in order to reduce the cost, the mass and the size of the power electronics unit (PEU) with high performance at any operating mode. In the proposed configuration, a novel Eight-Switch Inverter (ESI) is able to function as a bidirectional single-phase AC/DC battery charger/ vehicle to grid (V2G) and to transfer electrical energy between the DC-link (connected to the battery) and the electric traction system as DC/AC inverter. In addition, a bidirectional-interleaved DC/DC converter with dual-loop controller is proposed for interfacing the ESI to a low-voltage battery pack in order to minimize the ripple of the battery current and to improve the efficiency of the DC system with lower inductor size. To validate the performance of the proposed configuration, the indirect field-oriented control (IFOC) based on particle swarm optimization (PSO) is proposed to optimize the efficiency of the AC drive system in PHEVs. The maximum efficiency of the motor is obtained by the evaluation of optimal rotor flux at any operating point, where the PSO is applied to evaluate the optimal flux. Moreover, an improved AC/DC controller based Proportional-Resonant Control (PRC) is proposed in order to reduce the THD of the input current in charger/V2G modes. The proposed configuration is analyzed and its performance is validated using simulated results obtained in MATLAB/ SIMULINK. Furthermore, it is experimentally validated with results obtained from the prototypes that have been developed and built in the laboratory based on TMS320F2808 DSP.

Analysis and Measurement of the Magnetic Fields Cause by Operation of Electromotive Installations (전동력설비의 운전에 의해 발생되는 자계의 측정과 해석)

  • 이복희;길경석
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.2
    • /
    • pp.58-67
    • /
    • 1995
  • The paper describes the variation of magnetic fields caused by the operation of induction motors. The measuring system consists of the self-integrating magnetic field sensor, amplifier, and active integrator. From the calibration experiments, the frequency bandwidth of the magnetic field measuring system ranges from 20[Hz] to 300[kHz] and sensitivity is 0.234(mV/$\mu\textrm{T}$]. The magnetic fields generated under steady state and starting operations of duction motor are recorded by the proposed measuring system, and the fast Fourier transformation(FFT) of the measured data is performed to analyze the harmonic components. A single pulsed magnetic field is strongly caused by direct starting the induction motor, and its peak value is greater than 5 times as compared with the steady state value. The long transient duration and high intensity originates from the large inductance and dynamic characteristic of the induction motor, During the steady state operation of induction motor, subharmonics of magnetic field components, which depend on the pole number of induction motor, are observed. The lower order power-line harmonics can be inferred from the voltage flicker and current ripple which are derived from the torque fluctuation of induction motor. In the case of the induction motor drived by inverter, the harmonics of magnetic field are much more than those caused by direct starting method and are found generally to increase with decreasing the driving frequency.

  • PDF