• 제목/요약/키워드: voltage phasor approach

검색결과 9건 처리시간 0.02초

Extreme Learning Machine Approach for Real Time Voltage Stability Monitoring in a Smart Grid System using Synchronized Phasor Measurements

  • Duraipandy, P.;Devaraj, D.
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1527-1534
    • /
    • 2016
  • Online voltage stability monitoring using real-time measurements is one of the most important tasks in a smart grid system to maintain the grid stability. Loading margin is a good indicator for assessing the voltage stability level. This paper presents an Extreme Learning Machine (ELM) approach for estimation of voltage stability level under credible contingencies using real-time measurements from Phasor Measurement Units (PMUs). PMUs enable a much higher data sampling rate and provide synchronized measurements of real-time phasors of voltages and currents. Depth First (DF) algorithm is used for optimally placing the PMUs. To make the ELM approach applicable for a large scale power system problem, Mutual information (MI)-based feature selection is proposed to achieve the dimensionality reduction. MI-based feature selection reduces the number of network input features which reduces the network training time and improves the generalization capability. Voltage magnitudes and phase angles received from PMUs are fed as inputs to the ELM model. IEEE 30-bus test system is considered for demonstrating the effectiveness of the proposed methodology for estimating the voltage stability level under various loading conditions considering single line contingencies. Simulation results validate the suitability of the technique for fast and accurate online voltage stability assessment using PMU data.

Quantitative Analysis and Comparisons between In-Phase Control and Energy-Optimized Control for Series Power Quality Controllers

  • Xinming, Hunag;Jinjun, Liu;Hui, Zhang
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.553-566
    • /
    • 2009
  • In-phase control and energy-optimized control are the two major control strategies proposed for series power quality controllers (SPQC). However quantitative analysis and comparison between these two control strategies is quite limited in previous publications. In this paper, an extensive quantitative analysis is carried out on these two control strategies through phasor diagram approach, and a detailed quantitative comparison is conducted accordingly. The load current is used as the reference phasor, and this leads to a simpler and clearer phasor diagram for the quantitative relationship. Subsequently detailed analysis of SPQC using in-phase control and energy-optimized control are provided respectively, under different modes both for under voltage/voltage sag and for over voltage/voltage swell. The closed form analytic expressions and the curves describing SPQC compensation characteristics are obtained. The detailed system power flow is figured out for each mode, and the detailed quantitative comparison between the two control strategies is then carried out. The comparison covers several aspects of SPQC, such as required compensating voltage magnitude, required capacity of energy storage component, and maximal ride-through time. In the end, computer simulation and prototype experimental results are shown to verify the validity of all the analysis and the result of the comparison.

Loss Optimization for Voltage Stability Enhancement Incorporating UPFC Using Particle Swarm Optimization

  • Kowsalya, M.;Ray, K.K.;Kothari, D.P.
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권4호
    • /
    • pp.492-498
    • /
    • 2009
  • The placement of the UPFC is the major concern to ensure the full potential of utilization in the transmission network. Voltage stability enhancement with the optimal placement of UPFC using stability index such as modal analysis, Voltage Phasor method is made and the loss minimization including UPFC is formulated as an optimization problem. This paper proposes particle swarm optimization for the exact real power loss minimization including UPFC. The implementation of loss minimization for the optimal location of UPFC was tested with IEEE-14 and IEEE-57 bus system.

Preventive and Emergency Control of Power System for Transient Stability Enhancement

  • Siddiqui, Shahbaz A.;Verma, Kusum;Niazi, K.R.;Fozdar, Manoj
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.83-91
    • /
    • 2015
  • This paper presents preventive and emergency control measures for on line transient stability (security) enhancement. For insecure operating state, generation rescheduling based on a real power generation shift factor (RPGSF) is proposed as a preventive control measure to bring the system back to secure operating state. For emergency operating state, two emergency control strategies namely generator shedding and load shedding have been developed. The proposed emergency control strategies are based on voltage magnitudes and rotor trajectories data available through Phasor Measurement Units (PMUs) installed in the systems. The effectiveness of the proposed approach has been investigated on IEEE-39 bus test system under different contingency and fault conditions and application results are presented.

방사상 전력계통의 전압안정도 향상에 관한 연구 (A Study on the Voltage Stability Enhancement in Radial Power System)

  • 김병섭;정윤원;신중린;박종배;채명석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.87-89
    • /
    • 2002
  • This paper presents a new approach using an Improved branch exchange (IBE) technique to maximize the voltage stability as well as loss minimization in radial power systems. A suitable voltage stability index (VSI) for optimal routing algorithm is developed using novel methods both a critical transmission path based on a voltage phasor approach and an equivalent impedance method. Furthermore, the proposed algorithm can automatically detect the critical transmission path to be reached to a critical load faced with voltage collapse due to additional real or reactive leading. To develop an effective optimization technique, we also have applied a branch exchange algorithm based on a newly derived index of loss change. The proposed IBE algorithm for VSI maximization can effectively search the optimal topological structures of distribution feeders by changing the open/closed states of the sectionalizing and tie switches. The proposed algorithm has been tested with the various radial power systems to show its favorable performance.

  • PDF

Coordinated Wide-Area Regulation of Transmission System for Voltage Profile Improvement and Power Loss Reduction

  • Asadzadeh, Babak;Golshannavaz, Sajjad
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권5호
    • /
    • pp.279-286
    • /
    • 2017
  • In this paper, an optimal approach for the wide-area regulation of control devices in a transmission network is proposed. In order to realize an improved voltage profile and reduced power loss, existing devices such as tap-changing transformers, synchronous machines, and capacitor banks should be controlled in a coordinated and on-line manner. It is well-understood that phasor measurement units in transmission substations allow the system operators to access the on-line loading and operation status of the network. Accordingly, this study proposes efficient software applications that can be employed in area operation centers. Thus, the implanted control devices can be regulated in an on-line and wide-area coordinated approach. In this process, efficient objective functions are devised for both voltage profile improvement and power loss reduction. Subsequently, sensitivity analysis is carried out to determine the best weighting factors for these objectives. Extensive numerical studies are conducted on an IEEE 14-bus test system and a real-world system named the Azarbayjan Regional Transmission Network. The obtained results are discussed in detail to highlight the promising improvements.

방사상 전력계통의 전압안정도 향상을 위한 최적 라우팅 기법에 관한 연구 (A Study on the Optimal Routing Technique for the Improvement of Voltage Stability in Radial Power System)

  • 김병섭;신중린;박종배
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권11호
    • /
    • pp.568-576
    • /
    • 2002
  • This paper presents a new algorithm for the enhancement of voltage stability by optimal routing (OR) technique. A new voltage stability index (VSI) for optimal routing is also proposed by using theories of critical transmission path based on voltage phasor approach and equivalent impedance method. Furthermore, the proposed algorithm automatically detect the critical transmission path to critical transmission path to critical load which are faced to voltage collapse due to additional real or reactive loading. We also adopt a improved branch exchange (IBE) algorithm based on a tie branch power (TBP) flow equation to apply the OR technique. The proposed IBE algorithm for the VSI maximizing can effectively search the optimal topological structures of distribution feeders by changing the open/closed states of the sectionalizing and tie switches. The proposed algorithm has been evaluated with the practical IEEE 32, 69 bus test systems and KEPCO 148 bus test system to show favorable performance.

에너지보존법칙을 이용한 전력계통 안정도 직접 해석법에서의 응용 (Direct Energy Method of Power System Stability Analysis and its Application by using Energy Conservation Law)

  • 이용훈;조병훈;류헌수;문영현
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권10호
    • /
    • pp.1207-1214
    • /
    • 1999
  • Many papers have recently been presented to develop energy functions for power systems. However, earlier studies adopted case-by-case approaches, which failed to give a general approach to deal with various kinds of generator models. In this paper, two useful theorems are developed regarding the integral relationships of the generator power versus its phasor current and voltage. By using the proposed theorems, an exact energy conservation law can be derived from the complex integral. The proposed energy conservation law, which is free of the generator model, can be utilized to develop energy functions for various kinds of generator models including the speed governors and exciters. An illustrative example is given for a multimachine system with the Eq' model of generator. This thesis also shows a possibility of more accurate and fast stability analysis by using the proposed Energy Conservation Law.

  • PDF

에너지 보존법칙과 전력계통 안정도 직접 해석법에서의 응용 (Energy Conservation Law and its application for Direct Energy method of Power System Stability)

  • 문영훈;이용훈;조병훈;류헌수;최병곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.263-268
    • /
    • 1998
  • Many papers have recently been presented to develop energy functions for power systems. However, earlier studies adopted case-by-case approaches, which failed to give a general approach to deal with various kinds of generator models. In this paper, two useful theorems are developed regarding the integral relationships of the generator power versus its phasor current and voltage. By using the proposed theorems, an exact energy conservation law can be derived from the complex integral. The proposed energy conservation law, which is free of the generator model, can be utilized to develop energy functions for various kinds of generator models including the speed governors, and exciters. An illustrative example is given for a multimachine system with the Eq' model of generator. This thesis also shows a possibility of more accurate and fast stability analysis by using the proposed Energy Conservation Law.

  • PDF