• 제목/요약/키워드: voltage impact

검색결과 336건 처리시간 0.026초

Quantitative Evaluation of the Impact of Low-Voltage Loads due to Repetitive Voltage Sags

  • Yun Sang-Yun;Kim Jae-Chul;Moon Jong-Fil;Kang Bong-Seok
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권3호
    • /
    • pp.293-299
    • /
    • 2005
  • Automatic reclosing is a typical protection method in power distribution systems for the clearing of temporary faults. However, it has a fatal weakness in regards to voltage sags because it produces repetitive voltage sags. In this paper, we explored the repetitive impact of voltage sag due to the automatic reclosing of power distribution systems. The actual tests of low voltage loads were carried out for obtaining the susceptibility of voltage sags. The final results of the tests yielded power acceptability curves of voltage sag, and the curves transformed the 3-dimensional CBEMA (Computer Business Equipment Manufacturer Association) format. For the quantitative evaluation of the impact of repetitive voltage sags, an assessment formulation using the voltage sag contour was proposed. The proposed formulation was tested by using the voltage sag contour data of IEEE standard and the results of the test. Through the case studies, we verified that the proposed method can be effectively used to evaluate the actual impact of repetitive voltage sags.

연속적인 순간전압강하에 의한 저압 부하의 정량적 영향 평가 (Quantitative Evaluation of the Impact of Low-Voltage Loads Due to the Successive Voltage Sags)

  • 문종필;김재철;윤상윤;강봉석
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권12호
    • /
    • pp.678-684
    • /
    • 2004
  • Automatic reclosing is a typical protection method in power distribution systems for clearing the temporary faults. However, it has a fatal weakness in regards to voltage sags because it produces successive voltage sags. In this paper, we explored successive impact of voltage sag due to the automatic reclosing of power distribution systems. The actual tests of low voltage loads were accomplished for obtaining the susceptibility of voltage sags. The final results of the test yielded power acceptability curves of voltage sag, and the curves were transformed the 3-dimensional CBEMA(Computer Business Equipment Manufacturer Association) format. For the quantitative evaluation of the impact of successive voltage sags, an assessment formulation using the voltage sag contour was proposed. The proposed formulation was tested by using the voltage sag contour data of IEEE standard and the results of the test. Through the case studies, we verified that the proposed method can be effectively used to evaluate the actual impact of successive voltage sans.

풍력발전이 연계된 배전선로 전압 및 과도상태 해석 (Voltage and Transient State Analysis of Distribution Line connected to Wind Power Generation)

  • 김세호;나경윤;김건훈
    • 한국태양에너지학회 논문집
    • /
    • 제26권2호
    • /
    • pp.61-67
    • /
    • 2006
  • The use of the wind energy resource is a rapidly growing area world-wide. The number of installed units is continuously increasing, and therefore, it is important to respect and to deal with the impact of wind power generation system. From the view of an electric grid utility, there is a major problem with the impact of the wind system on the voltage of the electric grid, to which a turbine is connected. In this paper, it is investigated the voltage impact and transient state analysis on distribution line, with which wind power generation system is connected. Connections of wind power system usually occur to voltage drop due to reactive power absorption and sometime result in higher than nominal voltage.

Analysis for Evaluating the Impact of PEVs on New-Town Distribution System in Korea

  • Choi, Sang-Bong
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.859-864
    • /
    • 2015
  • This paper analyzes the impact of Plug-in Electric vehicles(PEVs) on power demand and voltage change when PEVs are connected to the domestic distribution system. Specifically, it assesses PEVs charging load by charging method in accordance with PEVs penetration scenarios, its percentage of total load, and voltage range under load conditions. Concretely, we develop EMTDC modelling to perform a voltage distribution analysis when the PEVs charging system by their charging scenario was connected to the distribution system under the load condition. Furthermore we present evaluation algorithm to determine whether it is possible to adjust it such that it is in the allowed range by applying ULTC when the voltage change rate by PEVs charging scenario exceed its allowed range. Also, detailed analysis of the impact of PEVs on power distribution system was carried out by calculating existing electric power load and additional PEVs charge load by each scenario on new-town in Korea to estimate total load increases, and also by interpreting the subsequent voltage range for system circuits and demonstrating conditions for countermeasures. It was concluded that total loads including PEVs charging load on new-town distribution system in Korea by PEVs penetration scenario increase significantly, and the voltage range when considering ULTC, is allowable in terms of voltage tolerance range up to a PEVs penetration of 20% by scenario. Finally, we propose the charging capacity of PEVs that can delay the reinforcement of power distribution system while satisfying the permitted voltage change rate conditions when PEVs charging load is connected to the power distribution system by their charging penetration scenario.

순간전압강하에 의한 단상 민감부하 및 삼상 유도전동기의 외란 민감도에 관한 연구 (A Study on the Susceptibility of Single-phase Sensitive Loads and the Three-phase Induction Motor by Voltage Sag)

  • 윤상윤;문종필;김재철;이희태
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권1호
    • /
    • pp.37-44
    • /
    • 2006
  • In this paper we explore the susceptibility of common sensitive loads by voltage sags of power distribution systems. The experimental approach was used for obtaining the susceptibility of single-phase loads and the three-phase induction motor. The experimental result of single-phase loads was transformed to the ITIC(Information of Technology Industry Council) format and used for evaluating the adverse impacts of a individual and repetitive sags using the performance contour of the foreign standard data. In order to assess the impact of voltage sags on three-phase induction motor, also, the experiment was peformed. The experiment was focused on the current, torque, and speed loss of the motor during a voltage sag. For comparing the impacts of individual and repetitive voltage sags, the variations of motor torque is focused among the experimental results. The sensitive curves of instantaneous current peak are used to describe the susceptibility of three-phase induction motor and 진so it were used for the quantitative analysis of the impact of three-phase induction motor due to voltage sags. Through the results of experiment, we verified that some types loads have more severe impact at repetitive voltage sags than individual ones and proposed method can be effectively used to evaluate the actual impact of voltage sags.

고내압 특성을 위한 진성영역과 트렌치 구조를 갖는 베이스 저항 사이리스터 (A Novel Trench Electrode BRT with Intrinsic Region for High Blocking Voltage)

  • 강이구;성만영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.243-246
    • /
    • 2001
  • In this paper, we have proposed a novel trench electrode Base Resistance Thyristor(BRT) and trench electrode BRT with a intrinsic region. A new power BRTs have shown superior electrical characteristics including snab-back effict and forward blocking voltage more than the conventional BRT. Especially, the trench electrode BRT with intrinsic region has obtained high blocking voltage of 1600V. The blocking voltage of conventional BRT is about 400V at the same size. Because the breakdown mechanism of BRT is avalanch breakdown by impact ionization, the trench electrode BRT with intrinsic region has suppressed impact ionization, effectively. If we use this principle, we can develope super high voltage power devices and applicate to another power devices including IGBT, EST and etc.

  • PDF

고내압 특성을 위한 진성영역과 트렌치 구조를 갖는 베이스 저항 사이리스터 (A Novel Trench Electrode BRT with Intrinsic Region for High Blocking Voltage)

  • 강이구;성만영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.243-246
    • /
    • 2001
  • In this paper, we have proposed a novel trench electrode Base Resistance Thyristor(BRT) and trench electrode BRT with a intrinsic region. A new power BRTs have shown superior electrical characteristics including snab-back effect and forward blocking voltage more than the conventional BRT. Especially, the trench electrode BRT with intrinsic region has obtained high blocking voltage of 1600V. The blocking voltage of conventional BRT is about 400V at the same size. Because the breakdown mechanism of BRT is avalanch breakdown by impact ionization, the trench electrode BRT with intrinsic region has suppressed impact ionization, effectively. If we use this principle, we can develope super high voltage power devices and applicate to another power devices including IGBT, EST and etc.

  • PDF

풍력발전시스템의 배전선로 전압 영향분석 (Distribution Line Voltage Impact Analysis of Wind Power Generation System)

  • 나경윤;고성민;김세호;이수묵;신삼균;김문찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1759-1761
    • /
    • 2005
  • The exploitation of the resource wind energy is a rapidly growing area world-wide. The number of installed units is continuously increasing, and therefore, it is important to respect and to deal with the impact of wind power generation system. From the view of an electric grid utility, there is a major problem with the impact of the wind system on the voltage of the electric grid, to which a turbine in connected. The problem is rather common in the connection of a wind power system to an already existing grid, since the grid is very seldom designed for the transmission of additional power. In this paper, it is investigated the voltage impact of distribution line, to which wind power generation system is connected.

  • PDF

Parameter Optimization of the LC filters Based on Multiple Impact Factors for Cascaded H-bridge Dynamic Voltage Restorers

  • Chen, Guodong;Zhu, Miao;Cai, Xu
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.165-174
    • /
    • 2014
  • The cascaded H-Bridge Dynamic Voltage Restorer (DVR) is used for protecting high voltage and large capacity loads from voltage sags. The LC filter in the DVR is needed to eliminate switching ripples, which also provides an accurate tracking feature in a certain frequency range. Therefore, the parameter optimization of the LC filter is especially important. In this paper, the value range functions for the inductance and capacitance in LC filters are discussed. Then, parameter variations under different conditions of voltage sags and power factors are analyzed. In addition, an optimized design method is also proposed with the consideration of multiple impact factors. A detailed optimization procedure is presented, and its validity is demonstrated by simulation and experimental results. Both results show that the proposed method can improve the LC filter design for a cascaded H-Bridge DVR and enhance the performance of the whole system.

사용 중 지진 가속도계의 정상 측정과 출력전압 선형비 오차율 관계 분석 (Relationship between Normal Measurement and Error Rate of Output Voltage Linear Ratio of Seismic Accelerometer in Use)

  • 김민준;조성철;정용훈;원정훈
    • 한국안전학회지
    • /
    • 제39권2호
    • /
    • pp.65-74
    • /
    • 2024
  • We analyzed the relationship between the normal measurement of the seismic accelerometer (SA) and the error rate of the output voltage linear ratio to propose an evaluation method to determine whether the SA in use is measuring normally. Utilizing a test bed, the regular operation of SA in use was evaluated using acceleration data measured through impact tests since there are no regulations regarding performance testing of SA in use. For the used SA, the error rate of the output voltage linear ratio, which is a major performance criterion, was evaluated. We analyzed common characteristics of the SA that satisfied the impact test and the performance criteria of the output voltage linear ratio error rate. The results indicated that we must consider the decreasing trend and convergence of the error rate as the measurement angle increases, ensuring that the average value of the output voltage linear ratio error rate is within 1%.