• Title/Summary/Keyword: volcanic systems

Search Result 55, Processing Time 0.024 seconds

Analysis of PM2.5 Impact and Human Exposure from Worst-Case of Mt. Baekdu Volcanic Eruption (백두산 분화 Worst-case로 인한 우리나라 초미세먼지(PM2.5) 영향분석 및 노출평가)

  • Park, Jae Eun;Kim, Hyerim;Sunwoo, Young
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1267-1276
    • /
    • 2020
  • To quantitatively predict the impacts of large-scale volcanic eruptions of Mt. Baekdu on air quality and damage around the Korean Peninsula, a three-dimensional chemistry-transport modeling system (Weather Research & Forecasting - Sparse Matrix Operation Kernel Emission - Comunity Multi-scale Air Quality) was adopted. A worst-case meteorology scenario was selected to estimate the direct impact on Korea. This study applied the typical worst-case scenarios that are likely to cause significant damage to Korea among worst-case volcanic eruptions of Mt. Baekdu in the past decade (2005~2014) and assumed a massive VEI 4 volcanic eruption on May 16, 2012, to analyze the concentration of PM2.5 caused by the volcanic eruption. The effects of air quality in each region-cities, counties, boroughs-were estimated, and vulnerable areas were derived by conducting an exposure assessment reflecting vulnerable groups. Moreover, the effects of cities, counties, and boroughs were analyzed with a high-resolution scale (9 km × 9 km) to derive vulnerable areas within the regions. As a result of analyzing the typical worst-case volcanic eruptions of Mt. Baekdu, a discrepancy was shown in areas between high PM2.5 concentration, high population density, and where vulnerable groups are concentrated. From the result, PM2.5 peak concentration was about 24,547 ㎍/㎥, which is estimated to be a more serious situation than the eruption of Mt. St. Helensin 1980, which is known for 540 million tons of volcanic ash. Paju, Gimpo, Goyang, Ganghwa, Sancheong, Hadong showed to have a high PM2.5 concentration. Paju appeared to be the most vulnerable area from the exposure assessment. While areas estimated with a high concentration of air pollutants are important, it is also necessary to develop plans and measures considering densely populated areas or areas with high concentrations of susceptible population or vulnerable groups. Also, establishing measures for each vulnerable area by selecting high concentration areas within cities, counties, and boroughs rather than establishing uniform measures for all regions is needed. This study will provide the foundation for developing the standards for disaster declaration and preemptive response systems for volcanic eruptions.

Overview of Epithermal Gold-Silver Mineralization, Korea:

  • Park, Seon-Gyu;Ryu, In-Chang;So, Chil-Sup;Wee, Soo-Meen;Kim, Chang-Seong;Park, Sang-Joon;Kim, Sahng-Yup
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.7-14
    • /
    • 2003
  • The precious-meta] mineralization of epithermal type in the Korean Peninsula, which is spread over a broader range of ca. 110 to 60 Ma with a major population between 90 and 70 Ma, mainly occurred along the NE-trending major strike-slip fault systems (i.e., the Gongju and Gwangju ones) that commonly include volcano-tectonic depressions and calderas. The occurrence of epithermal mineralization during Late Cretaceous clearly indicates that the geologic setting of the Korean Peninsula changed to the favorable depth of ore formation with very shallow-crustal environments (〈1.0 kb) accompanied with gold-silver (-base-meta]) mineralization. Epithermal gold-silver deposits in Korea are primarily distinguished as sediment-dominant and volcanic-dominant basins by using criteria of varying alteration, ore and gangue mineralogy deposited by the interaction of different ore-forming fluids with host rocks and meteoric waters. These differences between the central and southern portions are causally linked to the tectonic evolution of the Peninsula during the Cretaceous time. In the Early Cretaceous, the sinistral strike-slip movements due to the oblique subduction of the Izanagi Plate resulted in the Gongju and Gwangju fault systems in the central portion of the Korean Peninsula, which was accompanied with a number of sediment-dominant basins formed along these faults. During the Late Cretaceous, the mode of convergence of the Izanagi Plate changed to northwesteward so that orthogonal convergence occurred with a calc-alkaline volcanism. As results, volcanic-dominant basins were developed in the southern portion of the Peninsula, accompanied with volcano-tectonic depressions and caldera-related fractures. The magmatism and related fractures during Late Cretaceous may play an important role in the formation of geothermal systems. Thus, such fault zones may be favorable environments for veining emplacement that is closely related to the precious-metal mineralization of epithermal type in the Korean Peninsula.

  • PDF

Vegetation Succession and Rate of Topsoil Development on Shallow Landslide Scars of Sedimentary Rock Slope Covered by Volcanic Ash and Pumice, Southern Kyushu, Japan

  • Teramoto, Yukiyoshi;Shimokawa, Etsuro;Ezaki, Tsugio;Kim, Suk-Woo;Jang, Su-Jin;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.2
    • /
    • pp.196-204
    • /
    • 2016
  • In this study, vegetation succession and the rate of consequent topsoil development were investigated in shallow landslide scars of sedimentary rock slopes covered by volcanic ashes and pumice in Kagoshima prefecture, Japan. Seven shallow landslide scars of different ages were selected as study areas. In the initial period after the occurrence of a shallow landslide, deciduous broad-leaved trees such as Mallotus japonicus or Callicarpa mollis were occupied in the areas. Approximately 30 years after the landslide, evergreen broad-leaved trees such as Cinnamomum japonicum invaded in the areas, already existed present deciduous broad-leaved trees. After 50 years, the summit of the canopy comprised evergreen broad-leaved trees such as Castanopsis cuspidata var. sieboldii and Machilus thunbergii. Moreover, the diversity of vegetation invading the site reached the maximum after 15 years, followed by a decrease and stability in the number of trees. The total basal areas under vegetation increased with time. It was concluded that the vegetation community reaches the climax stage approximately 50 years after the occurrence of a shallow landslide in the study areas, in terms of the Fisher-Williams index of diversity (${\alpha}$) and the prevalence of evergreen broad-leaved trees. Moreover, according to the results of topsoil measurement in the study areas, the topsoil was formed at the rate of 0.31 cm/year. The development of topsoil usually functions to improve the multi-faceted functions of a forest. However, when the increased depth of topsoil exceeds the stability threshold, the conditions for a shallow landslide occurrence are satisfied. Therefore, we indicated to control the depth of topsoil and strengthen its resistance by forest management in order to restrain the occurrence of shallow landslides.

Recently Improved Exploration Method for Mineral Discovery (해외광물자원개발을 위한 최적 탐사기법과 동향)

  • Choi, Seon-Gyu;Ahn, Yong-Hwan;Kim, Chang-Seong;Seo, Ji-Eun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.57-65
    • /
    • 2009
  • Selection of good mineralized area is a combination of the integration of all the available geo-scientific (i.e., geological, geochemical, and geophysical) information, extrapolation of likely features from known mineralized terrenes and the ability to be predictive. The time-space relationships of the hydrothermal deposits in the East Asia are closely related to the changing plate motions. Also, two distinctive hydrothermal systems during Mesozoic occurred in Korea: the Jurassic/Early Cretaceous deep-level ones during the Daebo orogeny and the Late Cretaceous/Tertiary shallow geothermal ones during the Bulguksa event. Both the Mesozoic geothermal system and the mineralization document a close spatial and temporal relationship with syn- to post-tectonic magmatism. The Jurassic mineral deposits were formed at the relatively high temperature and deep-crustal level from the mineralizing fluids characterized by the relatively homogeneous and similar ranges of ${\delta}^{18}O$ values, suggesting that ore-forming fluids were principally derived from spatially associated Jurassic granitoid and related pegmatite. Most of the Jurassic auriferous deposits (ca. 165-145 Ma) show fluid characteristics typical of an orogenic-type gold deposits, and were probably generated in a compressional to transpressional regime caused by an orthogonal to oblique convergence of the Izanagi Plate into the East Asian continental margin. On the other hand, Late Cretaceous ferroalloy, base-metal and precious-metal deposits in the Taebaeksan, Okcheon and Gyeongsang basins occurred as vein, replacement, breccia-pipe, porphyry-style and skarn deposits. Diverse mineralization styles represent a spatial and temporal distinction between the proximal environment of sub-volcanic activity and the distal to transitional condition derived from volcanic environments. However, Cu (-Au) or Fe-Mo-W deposits are proximal to a magmatic source, whereas polymetallic or precious-metal deposits are more distal to transitional. Strike-slip faults and caldera-related fractures together with sub-volcanic activity are associated with major faults reactivated by a northward (oblique) to northwestward (orthogonal) convergence, and have played an important role in the formation of the Cretaceous Au-Ag lode deposits (ca. 110-45 Ma) under a continental arc setting. The temporal and spatial distinctions between the two typical Mesozoic deposit styles in Korea reflect a different thermal episodes (i.e., late orogenic and post-orogenic) and ore-forming fluids related to different depths of emplacement of magma (i.e., plutonic and sub-volcanic) due to regional changes in tectonic settings.

  • PDF

The Forming Process of the Maisan and Nearby Famous Mountains and the Related Mountain Ranges and Water Systems (마이산과 주변 명산의 형성과정과 그에 관련된 산맥과 수계 변화)

  • Oh, Changwhan;Lee, Seunghwan;Lee, Boyoung
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.201-219
    • /
    • 2017
  • The Jinan Basin which includes Maisan locates in the central part of the northern boundary of the Yeongnam Massif. The basement rocks of the Jinan Basin and surrounding area are Precambrian gneiss and Mesozoic granite which were exposed on the surface before Cretaceous. The Jinan Basin, one of the Cretaceous pull-apart basins in South Korea, formed along the Yongdong-Gwangju fault system. Maisan is composed of conglomerate deposited in the eastern slope of the Jinan Basin showing the shape of horse ears and the unusual topography where many tafonies were developed. The strike slip fault that caused the Jinan Basin was connected to the deep depth so that the magma formed at 200 km depth could have extruded on the surface causing active volcanic activity in and around the Jinan basin. As a result, Cheonbansan composed of pyroclastic rocks, Gubongsan consisting of volcanic neck and WoonilamBanilam formed by the lava flow, appear around Maisan forming a specific terrain. After the formation of the Jinan Basin and surrounding volcanic rocks, they uplifted to form mountains including Masian; the uplifting time may be ca. 69-38 Ma. At this time, the Noryeong mountain range may be formed in the regions which extended from Chugaryeong through Muju and Jinan to Hampyeong dividing the Geumgang and Seomjingang water systems. Due to the ecological barrier, the Noryeong mountain range, Coreoleuciscus splendidus living in the Geumgang water systems was differentiated from that in the Soemjingang water system. In addition, the Geumgang and Mangyeong-Dongjingang water systems were separated by the Unjangsan, which developed in the NNW direction. As a result, diverse ecosystem have been established in and around Maisan and at the same time, diverse cultural and historical resources related to Maisan's unique petrological features, were also established. Therefore, Maisan and surrounding area can be regarded as a place where a geotourism can be successfully established by combining the ecological, cultural and historical resources with a geological heritage. Therefore Maisan and surrounding areas have a high possibility to be a National Geopark and UNESCO Global Geopark.

The Practical Use of the Productive Aquifer Systems as a Source of a Renewable Thermal Energy and Local Water Works (지방상수도의 신규 수원과 재생에너지원으로서 고산출성 대수층의 활용)

  • Hahn, Jeongsang
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.4
    • /
    • pp.16-25
    • /
    • 2018
  • The Quaternary volcanic rocks, clastic sedimentary rocks of Kyongsang System, and carbonate rocks of Joseon and Pyongan System are known as good productive and potential aquifer systems in South Korea. National Groundwater Informaton Mangement and Service System (GIMS) indicates that the exploitable, sustainable, and current use of groundwater are about 18.8, 12.9, and $3.73billion\;m^3/a$, respectively. The rest amount ($9.1billion\;m^3/a$) can still be used for an additional water supply source. Therefore. comprehensive groundwater survey work comprising hydrogeological mapping, subsurface investigation and quantitative aquifer test etc. are highly required to establish rational groundwater management strategy.

Petrological Study on the Bulgugsa Acidic Igneous Rocks in Busan Area (부산지역(釜山地域)의 불국사산성화성암류(佛國寺酸性火成岩類)의 암석학적(岩石學的) 연구(硏究))

  • Cha, Moon-Sung
    • Economic and Environmental Geology
    • /
    • v.9 no.2
    • /
    • pp.85-106
    • /
    • 1976
  • The Bulgugsa acidic igneous rocks of the late Cretaceous age are largely distributed in Busan area, which is located in the southeastern corner of the Korean Peninsula. These igneous rocks comprise in ascending order, felsite, dacitic-rhyolitic welded tuffs, granite porphyry and granitic rocks. The former three members represent the early phase of volcanic activities, so that they are named as Jangsan volcanic rocks. The granitic rocks consist of granodiorite, hornblende biotite granite, Kumjongsan granite, fine grained granite, and Daebyen granite, represent the late phase of igneous activities. The Kumjongsan grainte, the largest pluton of the granitic mass, emplaced between two great vertical faults trending NNE. New chemical analyses of 33 rock samples of these acidic rocks are given. Their chemical compositions are generally similar to those of the late Mesozoic acidic igneous rocks of the northern Ashio mountains, and C-Zone granite group of the Ogcheon geosyncline, with their characteristic variation trends of several oxides. Their chemical compositions also show that $Al_2O_3$ is high value, and differentiation index is high, too. Systematically developing joints in Kumjungsan granite are divisible into two types at least. One is the NS-N $20^{\circ}E$ trendirig, $85^{\circ}{\sim}90^{\circ}$ dipping type of joint system which coincides with the trends of distribution of the granite mass and the dikes intruding this granite. Joints of this type may be cooling joints generated as tension cracks. The other is the $N60^{\circ}{\sim}70^{\circ}W$ or $N40^{\circ}{\sim}60^{\circ}E$ trending type of joint systems. It is considered that. joints belonging to this type may be shear joint occurring under the state of south-north tectonic couple acting at the east and west side of the granite mass. Igneous activities of the the Bulgugsa acidic igneous rocks in Busan area was taken place as. follows, formation of the magma reservoir, eruption and intrusion of felsite, consolidation of vents. and increasing vapor pressure in magma reservoir, eruption of pyroclastic flows, caldera collapse, intrusion of granite porphyry, and intrusion of granitic rocks at the latest stage.

  • PDF

Episodic Particulate Sulfate and Sulfur Dioxide on the Southwestern Japan Coast in March and April 2010

  • Nagatani, Tetsuji;Yamada, Maromu;Kojima, Tomoko;Zhang, Daizhou
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.41-52
    • /
    • 2012
  • Particulate sulfate in $PM_{2.5}$, sulfur dioxide ($SO_2$) and size-segregated aerosol particle number concentrations were measured at a site ($32^{\circ}19'N$, $129^{\circ}59'E$) on the southwestern Japan coast from 5 March to 10 April, 2010. Results show frequent episodic increases of sulfate and $SO_2$. Compared to the average concentration of sulfate $4.4{\pm}2.7\;{\mu}g\;m^{-3}$ in the whole observation period, episodic sulfate reached $10.5-20.1\;{\mu}g\;m^{-3}$. The variation of sulfate always synchronized with aerosol particles in the size range of $0.1-0.5 {\mu}m$, indicating the episodic sulfate was a consequence of the increase of the sub-micron particles. $SO_2$ did not have remarkable increase in any episodes of sulfate increase. During the passage of low pressure systems which loaded Asian dust in postfrontal air, concentrated sulfate appeared right behind the front but before dust arrival, suggesting the dominance of dust-free particulate sulfate. Weather and backward trajectory analyses revealed that air parcels with high sulfate passed eastern and northeastern China or Korean peninsula before arriving at the site. In contrast, those with high $SO_2$ passed an active volcano, Mt. Sakurajima, about 100 km in the south, suggesting the $SO_2$ was more likely from the volcanic emission. The ratio of sulfate to total sulfur compounds $({SO_4}^{2-})/({SO_4}^{2-}+SO_2)$ was 0.31-0.89 in continentally originated air while was 0.25-0.43 in the air having passed the volcano, showing more efficient conversions of $SO_2$ to sulfate in the air from the continent. The close dependence of the conversion on humidity in the continentally originated air was confirmed.

A Petrological Study of the Mudeungsan Tuff Focused on Cheonwangbong and Anyangsan (천왕봉과 안양산을 중심으로 한 무등산응회암의 암석학적 연구)

  • Jung, Woochul;Kil, Youngwoo;Huh, Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.325-336
    • /
    • 2014
  • Even though Mesozoic Mudeungsan tuff, located within Neungju Basin, has been named several rock names, it should be named as Mudeungsan tuff due to several evidences, such as fiamme, welded texture and rock fragments in the Mudeungsan tuff. Volcanic eruption boundary between the Cheonwangbong and Anyangsan areas is not clear, but petrochemical and mineral chemical evidences with different ages indicate clear petrological boundary between Cheonwangbong and Anyangsan. The Mudeungsan tuffs from Cheonwangbong and Anyangsan is welded crystal tuff with dacitic composition and were generated from cogenetic calc-alkaline magma in the volcanic arc environment. Geochemical events indicate that magma beneath Cheonwangbong was seems to have been evolved from the magma beneath Anyangsan due to fractional crystallization dominated by plagioclase.

Geophysical Well Logs in Basaltic Volcanic Area, Jeju Island (제주 현무암 지역에서 물리검층 자료 해석)

  • Hwang, Se-Ho;Shin, Je-Hyun;Park, Ki-Hwa;Park, In-Hwa;Koh, Gi-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.231-240
    • /
    • 2006
  • A variety of geophysical well loggings have been conducted to investigate the geological characteristics for basaltic volcanic area in Jeju Island. Specially, there is no precedent case study using geophysical well loggings in Jeju Island. And so, the proper understandings for geological features of Jeju Island are the key to interpret geophysical well logs. Presently, seawater intrusion monitoring systems have been constructed for systematic development and conservation of groundwater resources. As the results of geophysical well loggings in this seawater intrusion monitoring boreholes, the responses of well logs for saturated zone have distinctly identified basalt sequences. In particular, neutron logging, gamma-gamma (density) logging, and resistivity logging have well exhibited the characteristics of lava flows and lithologic boundaries. In hyalocastite, porosity is high, and resistivity is low. Eventually, geophysical well logs are useful for securing sustainable development of groundwater in Jeju Island in that it has identified the characteristics of geological responses.