• Title/Summary/Keyword: volcanic area

Search Result 431, Processing Time 0.028 seconds

A Minerlogical Study of Plagioclase in Volcanic Rocks from the Mt. Mudeung Area (무등산지역 화산암류에서 산출되는 사장석의 광물학적 연구)

  • Park Byung-Kyu;Kim Yong-Jun;Kim Youn-Joong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.3 s.45
    • /
    • pp.155-164
    • /
    • 2005
  • Volcanic rocks from the Mt. Mudeung area which are composed of Hwasun andesite, Mudeungsan dacite and Togok rhyolite contain plagioclase phenocrysts in common. Majority of the repeated twins observed in optical microscopy are albite twin and some are pericline twin. EPMA studies of plagioclases from Hwansun andesite, Mudeungsan dacite and Togok rhyolte indicate calcic andesine, andesine-oligoclase, nearly pure albite, respectively Albite twin and pericline twin can be easily distinguished through TEM diffraction patterns, which is quite difficult by optical microscopy. Plagioclases in volcanic rocks from the Mt. Mudeung area do not show e-reflection in (100) electron diffraction patterns, probably because of their high cooling rate, which inhibited phase separations during cooling.

Predicting the hazard area of the volcanic ash caused by Mt. Ontake Eruption (일본 온타케 화산분화에 따른 화산재 확산 피해범위 예측)

  • Lee, Seul-Ki;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.777-786
    • /
    • 2014
  • Mt. Ontake is the second highest volcano in Japan. On 02:52 Universal Time Coordinated(UTC), 27th September 2014, Ontake volcano began on the large eruption without notice. Due to the recent eruption, 55 people were killed and around 70 people injured. Therefore, This paper performed numerical experiment to analyse damage effect of volcanic ash corresponding to Ontake volcano erupt. The forecast is based on the outputs of the HYSPLIT Model for volcanic ash. This model, which is based on the UM numerical weather prediction data. Also, a quantitative analysis of the ash dispersion area, it has been detected using satellite images from optical Communication, Ocean and Meterological Satellite-Geostationary Ocean Color Imager (COMS-GOCI) images. Then, the GOCI detected area and simulated ash dispersion area were compared and verified. As the result, the similarity showed the satisfactory result between the detected and simulated area. The concordance ratio between the numerical simulation results and the GOCI images was 38.72 % and 13.57 %, Also, the concordance ratio between the JMA results and the GOCI images was 9.05 % and 11.81 %. When the volcano eruptions, volcanic ash range of damages are wide more than other volcanic materials. Therefore, predicting ash dispersion studies are one of main way to reduce damages.

Petrology of the Cretaceous Volcanic Rocks in the Gyemyeong peak and Janggun peak area, Mt. Geumjeung, Busan (부산 금정산의 계명봉과 장군봉 일대 백악기 화산암류에 관한 암석학적 연구)

  • Kim, Hye-Sook;Kim, Jin-Seop;Moon, Ki-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.1-17
    • /
    • 2009
  • This article carried studies of the petrographical and petrochemical characteristics on the Cretaceous volcanic rocks in the area of Janggun peak and Gyemyeong peak which is located at the northeastern area of Mt. Geumjeong, Busan. The areas are composed of andesitic rock, sedimentary rock, rhyolitic rock, and intrusive hornblende, biotite granites, in ascending order. According to petrochemistry, the major elements show the calc-alkaline rock series ranged medium-K to high-K. With increasing $SiO_2$, $Al_{2}O_{3}$, $Fe_{2}O_{3}$, $TiO_2$ CaO, MgO MnO and $P_{2}O_{5}$ are decreased and $K_{2}O$ and $Na_{2}O$ are increased in the volcanic rocks. The trace element compositions show high LILE/HFSE ratios and negative anomaly of Nb, and REE patterns show enrichments in LREE and (-) anomaly values increase of Eu from the basaltic andesite to andesite facies, therefore the volcanic rocks have typical characteristics of continental margin arc calc-alkaline volcanic rocks, produced in the subduction environment. The volcanic rock show nearly the same patterns in spider and REE diagram. Fractional crystallization of the basaltic magma would have produced the calc-alkaline andesitic magma. And the rhyolitic magma seems to have been evolved from the basaltic andesitic magma with fractional crystallization of plagioclase, pyroxene, hornblende, biotite.

Volcanic stratigraphy and petrology of Cretaceous volcanic rocks in the eastern part of the Euiseong Basin (의성분지 동부에 분포하는 백악기 화산암류의 화산층서와 암석학적 연구)

  • 정종옥;좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.238-253
    • /
    • 2000
  • In the eastern part of the Euiseong Basin acidic~intermediate volcanic rocks widely distribute on the Cretaceous sedimentary basement. Coeval granitic rocks and dyke rocks intruded into the volcanic rocks. Volcanic stratigraphy of study area are andesite lava, dacitic lapilli tuff, dacitic flow-banded lava, rhyolitic bedded tuff, rhyolitic massive tuff, dacitic massive lava, rhyolitlc welded tuff occur from the lower to the upper strata. $SiO_2$ content of the volcanic rocks range from 51 to 74 wt.%. With the increase of $SiO_2$, the contents of $TiO_2$, $Al_2$$O_3$, MgO, FeOT MnO, CaO, $P_2$$O_{5}$ decrease but those of $K_2$O increase. The contents of $Na_2$O show dispersive variation. This trend is quite sim-ilar to the major oxide variation in the volcanic rocks from the Yucheon sub-basin. The geochemical natures indicate that the volcanic rocks in the study area are discriminated to the island-arc type high K to medium K calc-alkaline rocks. The compositional variation of the volcanic rocks can be explained by the plagioclase fractionation of the volcanic magmas originated from similar source materials. The volcanic stratigraphy seems to have formed by at least two eruptive sequences of andesitic to rhyolitic and dacitic to rhyolitic magmas which underwent crystallization differentiation.

  • PDF

Volcanic Activity of the Volcanoes in the Hallasan Natural Reserve, Jeju Island, Korea (한라산천연보호구역 소화산들의 화산활동 기록)

  • Hong, Sei Sun;Lee, Choon Oh;Lim, Jaesoo;Lee, Jin Young;Ahn, Ung San
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.1-19
    • /
    • 2021
  • This study reports the Ar-Ar dating results for the volcanic rocks from small volcanoes(oreum) of the Hallasan Nature Reserve. According to the age of 40Ar/39Ar, the volcanic activity of the Hallasan Natural Reserve was started from about 192 ka ago. The basaltic trachyandesite and trachyte located in the Y valley near the Eorimok in the western part of the Hallasan Natural Reserve represent an age of about 191~192 ka, showing the oldest record of volcanic activity in the Hallasan Natural Reserve. In the Hallasan Natural Reserve, the small volcanoes older than 100 ka are Y Valley in Eorimok area (192±5 and 191±5 ka), Dongsu-Ak (184±19 ka), Mansedongsan (153±5 ka), Janggumok-Orum (135±6 ka), Eoseungsaengak (123±9 ka), Samgagbong (105±2 ka). And the small volcanoes younger than 100 ka are Witbangae-Oreum, Seongneol-Oreum, Muljangol, Yeongsil, Bori-Ak, Witsenueun-Oreum, Witsejokeun-Oreum, Heugbuleun-Oreum, Bangae-Oreum, Albangae-Oreum, Witsebuleun-Oreum, Baengnokdam, Nongo-Ak. According to the eruption of trachytes, the Hallasan Natural Reserve can be interpreted as having about 8 volcanic activities. Among them, 4 volcanic activities are related with the formation of trachyte dome, such as Wanggwanneung, Samgakbong, Yeongsil, and Baengnokdam, and 4 volcanic activities are related with flow or dyke of trachyte. The volcanic activity at the Hallasan Natural Reserve was started from northwest area, to in the southern area, and in the eastern area, and finally volcanic activity related to the formation of Baengnokdam.

K-Ar Ages of Alunite and Sericite in Altered Rocks, and Volcanic Rocks around the Haenam Area, Southwest Korea (해남지역(海南地域) 화산암류(火山岩類)와 납석 및 고령토 광상(鑛床)의 K-Ar 연대(年代))

  • Moon, Hi-Soo;Kim, Young Hee;Kim, Jong Hwan;You, Jang Han
    • Economic and Environmental Geology
    • /
    • v.23 no.2
    • /
    • pp.135-141
    • /
    • 1990
  • A number of alunite and pyrophyllite deposits occur around the Haenam area where Cretaceous volcanic and volcanogenic sediments are widely distributed. The K-Ar ages of alunite, sericite and whole rocks collected from alunite and pyrophyllite deposits and unaltered rocks representing various stratigraphic horizon of the area were determined and their formation stage was discussed. The ages of volcanic rocks range between $68.6{\pm}1.9$ and $94.1{\pm}2.0$ Ma corresponding to Cenomanian-Maastrichtian of upper Cretaceous. Andesitic rock gives $94.1{\pm}2.0$. Rhyolite and acidic tuffs give $79.47{\pm}1.7$ and $82.8{\pm}1.2$ Ma corresponding to Campanian. The later stage andesite gives $68.6{\pm}1.9$ Ma of Maastrichtian. The results suggest that volcanism of the area can be devided into three different stages. The ages of alunite and sericite range $71.8{\pm}2.8$ to $76.6{\pm}2.9$ Ma of late Campanian to early Maastrichtian which is rather earlier than the age of granite(67 Ma). It indicates that the alteration ages of these clay mineral deposits appeared to be related with its volcanism rather than the hydrothermal stage of granite of this area.

  • PDF

Analysis of Optical Satellite Images and Pyroclastic Flow Inundation Model for Monitoring of Pyroclastic Flow Deposit Area (화성쇄설류 분출 지역의 감시를 위한 광학영상과 화성쇄설류 범람 예측 모델링 분석)

  • Cho, Minji;Lee, Saro;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.173-183
    • /
    • 2014
  • Field survey research on damages caused by volcanic activities has plenty of difficulties due to human resources, safety and costs issues. Remote sensing application using satellite image is one of very useful tools to overcome those issues. In this study, we monitored the volcanic activities of Sinabung volcano in 2010, which is located in Sumatra island, Indonesia by using Landsat 7 ETM+ satellite images acquired on 17 April, 2009 and 30 July, 2012. We found that the area of pyroclastic flow inundation after 2010 has been tripled roughly, since extracting the pyroclastic flow inundation before and after 2010 eruption from classification. The result from modeling of pyroclastic flow inundation has been compared with the extracted pyroclastic flow inundation from Landsat 7 ETM+ images. As a result, we confirmed that the length of inundation area from the modeling was calculated to 92% accurate, but the width of inundation area was somewhat imprecisely estimated in the volcanic area having the sharp slope and only calculated to 17% accurate.

Volcanic Stratigraphy and Characteristics of Volcanic Rocks of the Sarabong-Byeoldobong-Hwabukbong Area, Cheju kland, Korea (제주도 사라봉-별도봉-화북봉 일원의 화산층서와 화산암의 특성)

  • Ko, Bo-kyun;Won, Chong-kwan;Lee, Moon-won;Sohn, In-seok
    • Journal of the Korean earth science society
    • /
    • v.22 no.1
    • /
    • pp.10-19
    • /
    • 2001
  • There are three scoria cones and their eruptive materials in Sarabong-Byeoldobong-Hwabukbong area Cheju Island. And they made complicated volcanic stratigraphy. In Byeoldobong tuff, basalt and granite xenoliths are present. It is presumed that the granite is a kind of basement of Cheju island. And Biseokgeori hawaiite has many kaersutite phenocrysts. Therefore, this area is very important for the study about history of volcanic activity of Cheju island. The lowest beds are Shinheung basalt and Byeoldobong tuff. Byeoldobong tuff has xenoliths of granite and phenocrystalline basalt. After the formation of these rocks, the Hwabukbong volcanism commenced. First of all this volcanism formed Biseokgeori hawaiite that has lots of kaersutite, a member of amphibole group, characteristically. Over this rock, Hwabukbong scoria cone was formed. The next Sarabong volcanism effused Keonipdong hawaiite that has lots of plagioclase and olivine phenocrysts and then Sarabong scoria cone was made up. Basalt xenolith in Byeoldobong tuff is different from Shinheungri basalt with regard to petrography, therefore this offers suggestion about existence of another basalt between basement and Shinheungri basalt. Granite xenolith derived from the basement of this area has features of the Jurassic granite in the Korea Peninsula, for example a lot of myrmekitic texture, microcline, and absolute age (172.4 Ma) by K-Ar method.

  • PDF

Monitoring and Forecasting the Eyjafjallajökull Volcanic Ash using Combination of Satellite and Trajectory Analysis (인공위성 관측자료와 궤적분석을 이용한 Eyjafjallajökull 화산재 감시와 예측)

  • Lee, Kwon Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.2
    • /
    • pp.139-149
    • /
    • 2014
  • A new technique, namely the combination of satellite and trajectory analysis (CSTA), for exploring the spatio-temporal distribution information of volcanic ash plume (VAP) from volcanic eruption. CSTA uses the satellite derived ash property data and a matching forward-trajectories, which can generate airmass history pattern for specific VAP. In detail, VAP properties such as ash mask, aerosol optical thickness at 11 ${\mu}m$ ($AOT_{11}$), ash layer height, and effective radius from the Moderate Resolution Imaging Spectro-radiometer (MODIS) satellite were retrieved, and used to estimate the possibility of the ash forecasting in local atmosphere near volcano. The use of CSTA for Iceland's Eyjafjallaj$\ddot{o}$kull volcano erupted in May 2010 reveals remarkable spatial coherence for some VAP source-transport pattern. The CSTA forecasted points of VAP are consistent with the area of MODIS retrieved VAP. The success rate of the 24 hour VAP forecast result was about 77.8% in this study. Finally, the use of CSTA could provide promising results for VAP monitoring and forecasting by satellite observation data and verification with long term measurement dataset.

Geological structure and groundwater resources of Cheju and Oahu Island (제주도와 OAHU도의 지질구조 및 수자원의 특성)

  • 최순학
    • The Journal of Engineering Geology
    • /
    • v.2 no.1
    • /
    • pp.70-91
    • /
    • 1992
  • Cheju and Oahu island are similar in geology, characterized by same types of volcanic activities during the late Tertiary to the early Quaternary. The occurrence of groundwater in both islands depend on two basic elements, permeability of volcanic rocks and precipitation. However, groundwater occurrence in Oahu is much more controlled by dike complex in the regional volcanic rocks. There are two different types of groundwater in both islands. One is perched groundwater standing at any high altitude, and the other is basal groundwater developed near the coastal area. The groundwater quality of Cheju island is good in general for drinking. But many wells near the eastern coastal area are salt intruded due to over pumping activities and the area of salt water intrusion has increased landward from the year of 1970. This feature of salt water contamination is similar at Pearl Harbour in Oahu island. In order to prevent this salt water contamination into fresh groundwater reservoir on Cheju island, it is urgently asked to make groundwater flow study along the coastal area on terms of groundwater potentials and their maximum ultimate exploration.

  • PDF