• Title/Summary/Keyword: volcanic activities

Search Result 120, Processing Time 0.026 seconds

A Comparative Analysis between 3D Geological Modeling and Magnetic Data of Fe-Mn Ore in Ugii Nuur, Mongolia (몽골 우기누르 철-망간 부존 지역의 3차원 지질모델과 자력탐사 결과의 비교분석)

  • Lee, Jeong-a;Yu, Jaehyung;Park, Gyesoon;Lee, Bum han;Kim, In-Joon;Heo, Chul-Ho
    • Economic and Environmental Geology
    • /
    • v.48 no.4
    • /
    • pp.313-324
    • /
    • 2015
  • This study constructed a 3D geological model for Uggi Nuur Fe-Mn mineralization zone in Mongolia, and the 3D geological distribution is cross-analyzed with magnetic anomaly distribution to figure out relationship between ore zone and subsurface geology. As a result of 4 step 3D modeling procedures including geological cross section, surface modeling, foliation modeling and solid modeling, the geology of the both study area is bordered by faults in NW direction with Munguntessj formation being located in the west side of the fault while Yashill formation is located on the other side of the fault. Moreover, the strike direction of foliation in the both formation shows same directional pattern with the NW faults. The magnetic anomaly distribution reveals that higher anomaly values are concentrated to near the ground surface. The analyses of 3 dimensional distribution between subsurface geology and magnetic anomaly indicates that higher anomaly is mainly distributed over the Munguntessj formation as a elongated lens bodies whereas the magnetic anomaly is evenly found in the both of Munguntessj formation and Yashill formation in the study area 2. It infers that volcanic activities associated mineralization occurred during silurian period, and the mineralized zone is thought to be realigned along the geological structures caused by later stage tectonic activities.

Possible Causes of Paleosecular Variation and Deflection of Geomagnetic Directions Recorded by Lava Flows on the Island of Hawaii

  • Czango Baag
    • Proceedings of the International Union of Geodesy And Geophysics Korea Journal of Geophysical Research Conference
    • /
    • 2003.05a
    • /
    • pp.20-20
    • /
    • 2003
  • In the summers of 1997 and 1998 and in February of 2000 we made 570 measurements of the ambient geomagnetic field 120 cm above the pavement surface of State Route 130, south of Pahoa, the island of Hawaii using a three-component fluxgate magnetometer. We measured at every 15.2 m (50 feet) interval covering a distance of 6, 310 m (20, 704 ft) where both historic and pre-historic highly magnetic basalt flows underlie. We also collected 197 core samples from eight road cuts, 489 specimens of which were subject to AF demagnetizations at 5 - 10 mT level up to a maximum field of 60 mT. We observed significant inclination anomalies ranging from a minimum of $31^{\circ}$ to a maximum $40^{\circ}$ where a uniform inclination value of $36.7^{\circ}$ (International Geomagnetic Reference Field, IGRF) was expected. Since the mean of the observed inclinations is approximately $35^{\circ}$ we assume that the study area is slightly affected by the magnetic terrain effect to a systematically shallower inclinations for being located in the regionally sloping surface of the southern side of the island (Baag, et al., 1995). We observed inclination anomalies showing wider (spacial) wavelength (160 - 600 m) and higher amplitudes in the historic lava flows area than in the northern pre-historic flows. Our observations imply that preexisting inclination anomalies such as those that we observed would have been interpreted as paleosecular variation (PSV). These inclination anomalies can best be attributed to concealed underground highly magnetic dikes, channel type lava flows, on-and-off hydrothermal activities through fissure-like openings, etc. Both the within- and between-site dispersions of natural remanent magnetization (NRM) are largest (up to ${\pm}7^{\circ}$) above the flows of 1955, while the area of pre-historic flows in the northern part of the study area exhibit the smallest dispersion. Nevertheless, mean inclinations of each historic flow of 1955 and 1790 are almost identical to that of the corresponding present field, whereas mean of NRM (after AF demagnetization) inclinations for each of the four pre-historic lava flow units is twelve to thirteen degrees lower than the present field inclination. We observed three cases of very large inclination variations from within a single flow, the best fitting curves of which are linear, second and third order polynomials each from within a single flow, whereas no present field variations are observed. This phenomena can be attributed to the notion that local magnetic anomalies on the surface of an active volcano are not permanent, but are transient. Therefore we believe that local magnetic anomalies of an active volcano may be constantly modified due to on going subsurface injections and circulations of hot material and also due to wide spacial and temporal distribution of highly magnetic basaltic flows that will constantly modify the topography which will in turn modify the local ambient geomagnetic field (Baag, et al., 1995). Our observations bring into question the general reliability of PSV data inferred from volcanic rocks, because on-going various geologic and geophysical activities associated with active volcano would continuously deflect and modify the ambient geomagnetic field.

  • PDF

The Development of Geosites and 3D Panoramic Geological Virtual Field Trips for Sinsu Island in Korea National Marine Park (남해 해상 국립공원 신수도의 지질명소 및 3D 파노라마 야외학습장 개발)

  • Cho, Jae-Hee;Yoon, Ma-Byong
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.1
    • /
    • pp.91-102
    • /
    • 2022
  • Sinsu Island in Korea National Marine Park is suitable for geological learning and geotourism as various geological structures, geological activities, and fossils can be observed. In this study, eight geosites were developed by analyzing 2015 revision science curriculum. The 3D panoramic geological virtual field trips were developed according to the three-step outdoor learning model. The 3D panoramic geological virtual field trips, which consist of 8 classes, are composed of cooperative learning by group, enabling autonomous inquiry activities. It is designed to realize convergence education that can learn not only geology but also creativity and humanity through nodular Limestones, exfoliation, salt weathering, perforated shell holes, sedimentary structures and environments, dinosaurs habitats, and volcanic activity. Five experts revised and supplemented the Delphi analysis method to verify the validity of the development purpose and direction. The satisfaction with the geological field for Sinsu Island course was 4.52, indicating that the overall satisfaction with the field course was high. By reflecting on the opinions of each student and reinforcing safety education, we completed the 3D panoramic geological virtual field trips for Sinsu Island. The 3D panoramic geological virtual field trips in Sinsu Island in Korea National Marine Park will be a good example of geology learning tourism where you can make memories and enjoy while studying geology.

Stratigraphy and Provenance of Non-marine Sediments in the Tertiary Cheju Basin (제주분지 제삼기 육성층의 층서 및 퇴적물 기원)

  • Kwon Young-In;Park Kwan-Soon;Yu Kang-Min;Son Jin-Dam
    • The Korean Journal of Petroleum Geology
    • /
    • v.3 no.1 s.4
    • /
    • pp.1-15
    • /
    • 1995
  • Seismic reflection profiles and exploratory drilling well samples from the southern marginal-continental shelf basin of Korea delineate that the Tertiary sedimentary sequences can be grouped into five sequences (Sequence A, Sequence B, Sequence C, Sequence D and Sequence E, in descending order). Paleontologic data, K-Ar age datings, correlation with tuff layers and sequence stratigraphic analysis reveal that the sequences A, B, C, D and E can be considered as the deposits of Holocene $\~$ Pleistocene, Pliocene, Late Miocene, Early $\~$ Middle Miocene and Oligocene, respectively. The sequence stratigraphic and structural analyses suggest that the southern part of the Cheju Basin had experienced severe folding and faulting. NE-SW trending strike-slip movement is responsible for the deformation. The sinistral movement of strike-slip fault ceased before the deposition of Sequence B. Age dating and rare-earth elements analysis of volvanic rocks reveal+ that the Sequence D was deposited during the Early $\~$ Middle Miocene and the Sequence I was deposited earlier than the deposition of the Green Tuff Formation. Sedimentary petrological studies indicate that sediments of the Sequence I came from the continental block provenance. After the deposition of the Sequence E, uplift of the source area resulted in increase of sediment supply, subsidence and volcanic activities. The Sequence D show these factors and the sediments of the Sequence D are considered to be transported from the recycled orogenic belt.

  • PDF

Lithium Distribution in Thermal Groundwater: A Study on Li Geochemistry in South Korean Deep Groundwater Environment (온천수 내 리튬 분포: 국내 심부 지하수환경의 리튬 지화학 연구)

  • Hyunsoo Seo;Jeong-Hwan Lee;SunJu Park;Junseop Oh;Jaehoon Choi;Jong-Tae Lee;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.729-744
    • /
    • 2023
  • The value of lithium has significantly increased due to the rising demand for electric cars and batteries. Lithium is primarily found in pegmatites, hydrothermally altered tuffaceous clays, and continental brines. Globally, groundwater-fed salt lakes and oil field brines are attracting attention as major sources of lithium in continental brines, accounting for about 70% of global lithium production. Recently, deep groundwater, especially geothermal water, is also studied for a potential source of lithium. Lithium concentrations in deep groundwater can increase through substantial water-rock reaction and mixing with brines. For the exploration of lithim in deep groundwater, it is important to understand its origin and behavior. Therefore, based on a nationwide preliminary study on the hydrogeochemical characteristics and evolution of thermal groundwater in South Korea, this study aims to investigate the distribution of lithium in the deep groundwater environment and understand the geochemical factors that affect its concentration. A total of 555 thermal groundwater samples were classified into five hydrochemical types showing distinct hydrogeochemical evolution. To investigate the enrichment mechanism, samples (n = 56) with lithium concentrations exceeding the 90th percentile (0.94 mg/L) were studied in detail. Lithium concentrations varied depending upon the type, with Na(Ca)-Cl type being the highest, followed by Ca(Na)-SO4 type and low-pH Ca(Na)-HCO3 type. In the Ca(Na)-Cl type, lithium enrichment is due to reverse cation exchange due to seawater intrusion. The enrichment of dissolved lithium in the Ca(Na)-SO4 type groundwater occurring in Cretaceous volcanic sedimentary basins is related to the occurrence of hydrothermally altered clay minerals and volcanic activities, while enriched lithium in the low-pH Ca(Na)-HCO3 type groundwater is due to enhanced weathering of basement rocks by ascending deep CO2. This reconnaissance geochemical study provides valuable insights into hydrogeochemical evolution and economic lithium exploration in deep geologic environments.

Contrasting Styles of Gold and Silver Mineralization in the Central and Southeastern Korea (한국 중부와 동남부지역 금·은광화작용의 성인적 특성)

  • Choi, Seon-Gyu;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.587-597
    • /
    • 1995
  • Two distinct precious-metal mineralizations actively occur at central and southeastern Korea which display consistent relationships among geologic, geochemical and genetic environments. A large number of preciousmetal vein deposits in the central Korea occur in or near Mesozoic granite batholiths elongated in a NE-SW direction. Whereas, gold and/or silver deposits in the southeastern Korea occur within Cretaceous volcanic and sedimentary rocks. However, most of the precious-metal deposits in the southeastern Korea show characteristics of the silver-rich deposits than the gold-rich deposits in the central Korea. Two epochs of main igneous activities are recognized: a) Jurassic Daebo igneous activity between 121 and 183 Ma, and b) Cretaceous Bulgugsa igneous activity between 60 and 110 Ma. Precious-metal mineralization took place between 158 and 71 Ma, coinciding with portions of the two magmatic activities. Contrasts in the style of mineralization, together with radiometric age data and differences in geologic settings reflect the genetically variable natures of hydrothermal activities from middle Jurassic to late Cretaceous time. The compilation and re-evaluation of these data suggest that the genetic types of hydrothermal precious-metal vein deposits in the central and southeastern Korea varied with time. The Jurassic and early Cretaceous mineralizations are characterized by the Au-dominant type, but tend to change to the Au-Ag and/or Ag-dominant types at late Cretaceous. The Jurassic Au-dominant deposits commonly show several characteristics; prominent associations with pegmatites, simple massive vein morphologies, high fmeness values in ore-concentrating parts, and a distinctively simple ore mineralogy such as Fe-rich sphalerite, galena, chalcopyrite, Au-rich electrum, pyrrhotite and/or pyrite. The Cretaceous precious-metal deposits are generally characterized by some- features such as complex vein morphologies, low to medium fmeness values in the ore concentrates, and abundance of ore minerals including Ag sulfosalts, Ag sulfides, Ag tellurides and native silver. Mineralogical and fluid inclusion studies indicate that the Jurassic Au-dominant deposits in the central area were formed at the high temperature (about $300^{\circ}$ to $500^{\circ}C$) and pressure (about 4 to 5 kbars), whereas mineralizations of the Cretaceous Au-Ag and Ag-dominant deposits were occurred at the low temperature (about $200^{\circ}$ to $350^{\circ}C$) and pressure (<0.5 kbars) from the ore fluids containing more amounts of less-evolved meteoric waters.

  • PDF

Effect of Different Soil Managements on Physical Properties and Microbial Activities in Citrus Orchard Soil (초생재배가 감귤원 토양의 물리성과 미생물 활성에 미치는 영향)

  • Joa , Jae-Ho;Lee , Jong-Hee;Won , Hung-Yon;Han , Seung-Gap;Lim , Han-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.279-284
    • /
    • 2008
  • This study was performed to investigate effect of different soil managements on physical properties and microbial activities in volcanic ash citrus orchard soil. Experiment plots had managed to control weeds on soil for 4 years with clean cultivation (CCM) used with herbicide, natural sod cultivation (NSCM), kentucky blue grass sod cultivation (KBG). Soil samples were taken on October, in both 1998 and 2000 from 3 experimental plots. In NSCM, Soil hardness was lower at 11.8 mm than in CCM. And water stable Aggregation coefficient(>0.5 mm) was high at 26.7% compared with CCM. Soil bulk density and porosity showed no significant among the treatments. Soil acid phosphatase was high in sod cultivation plots and the amount of microbial biomass C was about twice higher at $525.4mg\;kg^{-1}$ in KBG than in CCM. Conclusionally, Sod cultivation improved soil physical properties such as aggregation, hardness and increased microbial activities compared with clean cultivation in citrus orchard soil. Soil total PLFA, acid phosphatase, and microbial biomass C contents were investigated on May in nonvolcanic ash citrus soil. Soil samples were collected at 5 sites each; convention cultivation grown with herbicide, natural sod cultivation grown with 1/2 chemicals, organic cultivation. That sites have been managed for 5 years over. PLFA contents were two times higher at $112.2n\;mol\;g^{-1}$ in organic cultivation than in convention cultivation. According to the PLFA indicator, Gram negative bacteria and actinomycetes in organic cultivation were high compared with convention cultivation, which were at 15.1%, 6.6%, respectively. Soil microbial biomass C contents was about twice higher in organic cultivation than in convention cultivation. Soil acid phosphatase was high at 17.6% in organic cultivation compared with convention cultivation.

The Exploration Methodology of Seafloor Massive Sulfide Deposit by Use of Marine Geophysical Investigation (해양 지구물리 탐사를 이용한 해저열수광상 부존지역 탐지 방법)

  • Kim, Hyun-Sub;Jung, Mee-Sook;Kim, Chang-Hwan;Kim, Jong-Uk;Lee, Kyeong-Yong
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.167-176
    • /
    • 2008
  • Lau basin of the south Pacific, as an active back arc basin, is promising area bearing seafloor massive hydrothermal deposit that is located in a subduction zone between the Pacific ocean plate and Indo-Australian continental plate. We performed multi-beam bathymetry survey in the Lau basin using EM120, to find out high hydrothermal activity Bone. Fonualei Rift and Spreading Center (FRSC) and Mangatolou Triple Junction (MTJ) area were selected for precise site survey through seafloor morphology investigation. The result of surface and deep-tow magnetometer survey showed that Central Anomaly Magnetization High (CAMH) recorded which is associated with active ridge in FRSC-2 and revealed very low magnetic anomalies that can be connected to past or present high hydrothermal activity in MTJ-1 seamount area. Moreover, the physical and chemical tracers of hydrothermal vent flume, i.e., transmission, hydrogen ion concentration (pH), adenosine triphosphate (ATP), methane (CH4) by use of CTD system, showed significant anomalies in those areas. From positive vent flume results, we could conclude that these areas were or are experiencing very active volcanic activities. The acquired chimney and hydrothermal altered bed rock samples gave us confidence of the existence of massive hydrothermal deposit. Even though not to use visual exploration equipment such as ROV, DTSSS, etc., traditional marine geophysical investigation approach might be a truly cost-effective tool for exploring seafloor hydrothermal massive deposit.

Occurrence and Formation Environment of Boron Deposits in Turkey (터키 붕소광상의 부존특성 및 형성환경)

  • Koh, Sang-Mo;Lee, Bum Han;Lee, Gilljae;Cicek, Murat
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.541-549
    • /
    • 2014
  • The annual borate production in Turkey is about 3 million tons, which occupies approximately 61 percent of total annual world production. Turkey has five boron deposits including Bigadic, Emet, Kestelek, Kirka, and Sultancayir. At present, Bigadic, Emet, and Kirka deposits are operating. Kirka boron deposit is distributed within volcanoclatic sedimentary group as mainly layered, rarely brecciated and massive types. Major borate is borax associated with colemanite and ulexite. They show a horizontal symmetrical zonation from Na borate (borax) in the center of deposit to Na-Ca borate (ulexite) and Ca-borate (colemanite) in margin. Bigadic boron deposit is known as the largest colemanite deposit in the world. This deposit occurs as two borate bearing horizons in Miocene volcanoclastic sedimentary group. Thickness ranges from several meters to 100 meter with a length of several hundreds meters. Borate ore bodies which are mainly composed of colemanite and ulexite are alternated with claystone, mudstone, tuff and layered limestone as lenticular shape. Sultancayir boron deposit is mainly distributed within gray limestone. Main borate minerals of this deposit are pandermite and ulexite. Pandermite and ulexite occur as colloform aggregate and small veinlet, respectively. Turkish boron deposits are evaporite deposit which were formed in Miocene playa-lake environment. Boron was supplied to the deposits by the volcanic and hydrothermal activities.

An Interpretation of Changes in Groundwater Level and Electrical Conductivity in Monitoring Wells in Jeiu Island (제주도의 지하수 관측망 자료를 이용한 지하수위 및 전기전도도 변화 해석)

  • Lee, Jin-Yong;Lee, Gyu-Sang;Song, Sung-Ho
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.925-935
    • /
    • 2007
  • Water sources in volcanic Jeju Island are almost entirely dependent on groundwater because there are actually no perennial streams or rivers due to the permeable nature of surface soils derived from basaltic or trachytic rocks. Uncontrolled development of groundwater resulted in substantial water-level decline, groundwater pollution, and seawater intrusion in several places of the island. To maintain its sustainable groundwater, the provincial government has declared some parts of the island as the Special Groundwater Conservation/Management Area since 1994. Hence, all the activities for the groundwater development in the area should obtain official permit from relevant authorities. Furthermore, to acquire information on groundwater status, a network of groundwater monitoring was established to cover most of the low land and coastal areas with the installation of automatic monitoring systems since 2001. The analysis of the groundwater monitoring data indicated that the water levels had decreased at coastal area, especially in northern part of the island. Moreover, very high electrical conductivity (EC) levels and their increasing trends were observed in the eastern part, which was ascribable to seawater intrusion by intensive pumping in recent years. Water level decline and EC rise in the coastal area are expected to continue despite the present strict control on additional groundwater development.