• Title/Summary/Keyword: volatility

Search Result 1,121, Processing Time 0.027 seconds

A Study on the Volatility of Global Stock Markets using Markov Regime Switching model (마코브국면전환모형을 이용한 글로벌 주식시장의 변동성에 대한 연구)

  • Lee, Kyung-Hee;Kim, Kyung-Soo
    • Management & Information Systems Review
    • /
    • v.34 no.3
    • /
    • pp.17-39
    • /
    • 2015
  • This study examined the structural changes and volatility in the global stock markets using a Markov Regime Switching ARCH model developed by the Hamilton and Susmel (1994). Firstly, the US, Italy and Ireland showed that variance in the high volatility regime was more than five times that in the low volatility, while Korea, Russia, India, and Greece exhibited that variance in the high volatility regime was increased more than eight times that in the low. On average, a jump from regime 1 to regime 2 implied roughly three times increased in risk, while the risk during regime 3 was up to almost thirteen times than during regime 1 over the study period. And Korea, the US, India, Italy showed ARCH(1) and ARCH(2) effects, leverage and asymmetric effects. Secondly, 278 days were estimated in the persistence of low volatility regime, indicating that the mean transition probability between volatilities exhibited the highest long-term persistence in Korea. Thirdly, the coefficients appeared to be unstable structural changes and volatility for the stock markets in Chow tests during the Asian, Global and European financial crisis. In addition, 1-Step prediction error tests showed that stock markets were unstable during the Asian crisis of 1997-1998 except for Russia, and the Global crisis of 2007-2008 except for Korea and the European crisis of 2010-2011 except for Korea, the US, Russia and India. N-Step tests exhibited that most of stock markets were unstable during the Asian and Global crisis. There was little change in the Asian crisis in CUSUM tests, while stock markets were stable until the late 2000s except for some countries. Also there were stable and unstable stock markets mixed across countries in CUSUMSQ test during the crises. Fourthly, I confirmed a close relevance of the volatility between Korea and other countries in the stock markets through the likelihood ratio tests. Accordingly, I have identified the episode or events that generated the high volatility in the stock markets for the financial crisis, and for all seven stock markets the significant switch between the volatility regimes implied a considerable change in the market risk. It appeared that the high stock market volatility was related with business recession at the beginning in 1990s. By closely examining the history of political and economical events in the global countries, I found that the results of Lamoureux and Lastrapes (1990) were consistent with those of this paper, indicating there were the structural changes and volatility during the crises and specificly every high volatility regime in SWARCH-L(3,2) student t-model was accompanied by some important policy changes or financial crises in countries or other critical events in the international economy. The sophisticated nonlinear models are needed to further analysis.

  • PDF

Price Volatility, Seasonality and Day-of-the Week Effect for Aquacultural Fishes in Korean Fishery Markets (수산물 시장에서의 양식 어류 가격변동성.계절성.요일효과에 관한 연구 - 노량진수산시장의 넙치와 조피볼락을 중심으로 -)

  • Ko, Bong-Hyun
    • The Journal of Fisheries Business Administration
    • /
    • v.40 no.2
    • /
    • pp.49-70
    • /
    • 2009
  • This study proviedes GARCH model(Bollerslev, 1986) to analyze the structural characteristics of price volatility in domestic aquacultural fish market of Korea. As a case study, flatfish and rock-fish are analyzed as major species with relatively high portion in an aspect of production volume among fish captured in Korea. For analyzing, this study uses daily market data (dating from Jan 1 2000 to June 30, 2008) published by the Noryangjin Fisheries Wholesale Market which is located in Seoul of Korea. This study performs normality test on trading volume and price volatility of flatfish and rock-fish as an advanced empirical approach. The normality test adopted is Jarque-Bera test statistic. As a result, first, a null hypothesis that "an empirical distribution follows normal distribution" was rejected in both fishes. The distribution of daily market data of them were not only biased toward positive(+) direction in terms of kurtosis and skewness, but also characterized by leptokurtic distribution with long right tail. Secondly, serial correlations were found in data on market trading volume and price volatility of two species during very long period. Thirdly, the results of unit root test and ARCH-LM test showed that all data of time series were very stationary and demonstrated effects of ARCH. These statistical characteristics can be explained as a reasonable ground for supporting the fitness of GARCH model in order to estimate conditional variances that reveal price volatility in empirical analysis. From empirical data analysis above, this study drew the following conclusions. First of all, from an empirical analysis on potential effects of seasonality and the day of week on price volatility of aquacultural fish, Monday effects were found in both species and Thursday and Friday effects were also found in flatfish. This indicates that Monday is effective in expanding price volatility of aquacultural fish market and also Monday has higher effects upon the price volatility of fish than other days of week have since it has more new information for weekend. Secondly, the empirical analysis led to a common conclusion that there was very high price volatility of flatfish and rock-fish. This points out that the persistency parameter($\lambda$), an index of possibility for current volatility to sustain similarly in the future, was higher than 0.8-equivalently nearly to 1-in both flatfish and rock-fish, which presents volatility clustering. Also, this study estimated and compared and model that hypothesized normal distributions in order to determine fitness of respective models. As a result, the fitness of GARCH(1, 1)-t model was better than model where the distribution of error term was hypothesized through-distribution due to characteristics of fat-tailed distribution, was also better than model, as described in the results of basic statistic analysis. In conclusion, this study has an important mean in that it was introduced firstly in Korea to investigate in price volatility of Korean aquacultural fishery products, although there was partially a limited of official statistic data. Therefore, it is expected that the results of this study will be useful as a reference material for making and assessing governmental policies. Also, it is looked forward that the results will be helpful to build a fishery business plan as and aspect of producer, and also to take timely measures to potential price fluctuations of fishery products in market. Hence, it is advisable that further studies related to such price volatility in fishery market will extend and evolve into a wider variety of articles and issues in near future.

  • PDF

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.

A Study on Information Availability and Asymmetric Volatility in the Korea Stock Market (정보량과 비대칭적 변동성에 관한 연구)

  • An, Seung-Cheol;Jang, Seung-Uk;Ha, Jong-Bae
    • The Korean Journal of Financial Management
    • /
    • v.25 no.1
    • /
    • pp.109-140
    • /
    • 2008
  • The primary objective of this paper investigates whether asymmetric volatility phenomenon is caused by differences of opinion among investors and analyses information availability has an effect on asymmetric volatility. The empirical test period covers recent 6 years from January 4, 2000 to December 29, 2005. Five portfolios have been formed according to information availability(volume and market value). For the purpose of this study, We use TGARCH model, TGARCH-M model and adjusted model which include trading volume as a proxy differences of opinion among investors. The results are summarized as follows ; First, adjusted model analysis shows that asymmetric volatility phenomenon is disappeared or asymmetric coefficient and ratio is decreased than basis model. Second, portfolio analysis shows that the higher volume and market value, the more prominent asymmetric volatility phenomenon. And adjusted model analysis shows the higher volume and market value, the more decrease asymmetric ratio. Over all, assertion that differences of opinion among investors has caused asymmetric volatility phenomenon is regarded as reasonable. And, We see that information availability have great effect on asymmetric volatility phenomenon. We think that theses results can also occur opinion adjustment of optimistic investors. Namely, asymmetric volatility phenomenon can occur difference of information authenticity.

  • PDF

A Study on the Relation Exchange Rate Volatility to Trading Volume of Container in Korea (환율변동성과 컨테이너물동량과의 관계)

  • Choi, Bong-Ho
    • Journal of Korea Port Economic Association
    • /
    • v.23 no.1
    • /
    • pp.1-18
    • /
    • 2007
  • The purpose of this study is to examine the effect of exchange rate volatility on Trading Volume of Container of Korea, and to induce policy implication in the contex of GARCH and regression model. In order to test whether time series data is stationary and the model is fitness or not, we put in operation unit root test, cointegration test. And we apply impulse response functions and variance decomposition to the structural model to estimate dynamic short run behavior of variables. The major empirical results of the study show that the increase in exchange rate volatility exerts a significant negative effect on Trading Volume of Container in long run. The results Granger causality based on an error correction model indicate that uni-directional causality between trading volume of container and exchange rate volatility is detected. This study applies impulse response function and variance decompositions to get additional information regarding the Trading Volume of Container to shocks in exchange rate volatility. The results indicate that the impact of exchange rate volatility on Trading Volume of Container is negative and converges on a stable negative equilibrium in short-run. Th exchange rate volatility have a large impact on variance of Trading Volume of Container, the effect of exchange rate volatility is small in very short run but become larger with time. We can infer policy suggestion as follows; we must make a stable policy of exchange rate to get more Trading Volume of Container

  • PDF

The Unexpected Volatility of Foreigners' Trading Behavior Effects on the Korean Stock Market Volatility (외국인 거래행태의 비기대변동성은 주식수익률의 변동성에 영향을 주는가)

  • Byun, Young tae
    • Management & Information Systems Review
    • /
    • v.31 no.4
    • /
    • pp.593-609
    • /
    • 2012
  • This study is designed to investigate whether the information spillover effect is existed between the foreign investors' unexpected volatility of net purchasing intensity and the volatilities of returns in terms of daily closing stock return, overnight return, and daytime return, before and after financial crisis in Korea. The result of this study shows that there is negative information spillover effect between the foreign investors' unexpected volatility of net purchasing intensity and the volatility of daily closing stock return for time t-1. However, there is an opposite result for time t, showing positive information transmission effect. For the overnight return, the test result provides there is no statistical significance between the foreign investor's unexpected volatility of net purchasing intensity and the volatilities of return. In addition, I found that the information transmission effect is existed between the foreign investor's unexpected volatility of net purchasing intensity and the volatilities of the daytime return for the entire timeline.

  • PDF

Comparative Study of Automatic Trading and Buy-and-Hold in the S&P 500 Index Using a Volatility Breakout Strategy (변동성 돌파 전략을 사용한 S&P 500 지수의 자동 거래와 매수 및 보유 비교 연구)

  • Sunghyuck Hong
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.57-62
    • /
    • 2023
  • This research is a comparative analysis of the U.S. S&P 500 index using the volatility breakout strategy against the Buy and Hold approach. The volatility breakout strategy is a trading method that exploits price movements after periods of relative market stability or concentration. Specifically, it is observed that large price movements tend to occur more frequently after periods of low volatility. When a stock moves within a narrow price range for a while and then suddenly rises or falls, it is expected to continue moving in that direction. To capitalize on these movements, traders adopt the volatility breakout strategy. The 'k' value is used as a multiplier applied to a measure of recent market volatility. One method of measuring volatility is the Average True Range (ATR), which represents the difference between the highest and lowest prices of recent trading days. The 'k' value plays a crucial role for traders in setting their trade threshold. This study calculated the 'k' value at a general level and compared its returns with the Buy and Hold strategy, finding that algorithmic trading using the volatility breakout strategy achieved slightly higher returns. In the future, we plan to present simulation results for maximizing returns by determining the optimal 'k' value for automated trading of the S&P 500 index using artificial intelligence deep learning techniques.

Correlation Analyses of the Temperature Time Series Data from the Heat Box for Energy Modeling in the Automobile Drying Process (자동차 건조 공정 에너지 예측 모형을 위한 공조기 온도 시계열 데이터의 상관관계 분석)

  • Lee, Chang-Yong;Song, Gensoo;Kim, Jinho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.2
    • /
    • pp.27-34
    • /
    • 2014
  • In this paper, we investigate the statistical correlation of the time series for temperature measured at the heat box in the automobile drying process. We show, in terms of the sample variance, that a significant non-linear correlation exists in the time series that consist of absolute temperature changes. To investigate further the non-linear correlation, we utilize the volatility, an important concept in the financial market, and induce volatility time series from absolute temperature changes. We analyze the time series of volatilities in terms of the de-trended fluctuation analysis (DFA), a method especially suitable for testing the long-range correlation of non-stationary data, from the correlation perspective. We uncover that the volatility exhibits a long-range correlation regardless of the window size. We also analyze the cross correlation between two (inlet and outlet) volatility time series to characterize any correlation between the two, and disclose the dependence of the correlation strength on the time lag. These results can contribute as important factors to the modeling of forecasting and management of the heat box's temperature.

Exchange Rate Volatility Measures and GARCH Model Applications : Practical Information Processing Approach (환율 변동성 측정과 GARCH모형의 적용 : 실용정보처리접근법)

  • Moon, Chang-Kuen
    • International Commerce and Information Review
    • /
    • v.12 no.1
    • /
    • pp.99-121
    • /
    • 2010
  • This paper reviews the categories and properties of risk measures, analyzes the classes and structural equations of volatility forecasting models, and presents the practical methodologies and their expansion methods of estimating and forecasting the volatilities of exchange rates using Excel spreadsheet modeling. We apply the GARCH(1,1) model to the Korean won(KRW) denominated daily and monthly exchange rates of USD, JPY, EUR, GBP, CAD and CNY during the periods from January 4, 1998 to December 31, 2009, make the estimates of long-run variances in the returns of exchange rate calculated as the step-by-step change rate, and test the adequacy of estimated GARCH(1,1) model using the Box-Pierce-Ljung statistics Q and chi-square test-statistics. We demonstrate the adequacy of GARCH(1,1) model in estimating and forecasting the volatility of exchange rates in the monthly series except the semi-variance GARCH(1,1) applied to KRW/JPY100 rate. But we reject the adequacy of GARCH(1,1) model in estimating and forecasting the volatility of exchange rates in the daily series because of the very high Box-Pierce-Ljung statistics in the respective time lags resulting to the self-autocorrelation. In conclusion, the GARCH(1,1) model provides for the easy and helpful tools to forecast the exchange rate volatilities and may become the powerful methodology to overcome the application difficulties with the spreadsheet modeling.

  • PDF

Volatility Computations for Financial Time Series: High Frequency and Hybrid Method (금융시계열 변동성 측정 방법의 비교 분석: 고빈도 자료 및 융합 방법)

  • Yoon, J.E.;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1163-1170
    • /
    • 2015
  • Various computational methods for obtaining volatilities for financial time series are reviewed and compared with each other. We reviewed model based GARCH approach as well as the data based method which can essentially be regarded as a smoothing technique applied to the squared data. The method for high frequency data is focused to obtain the realized volatility. A hybrid method is suggested by combining the model based GARCH and the historical volatility which is a data based method. Korea stock prices are analysed to illustrate various computational methods for volatilities.