• Title/Summary/Keyword: volatile profile

Search Result 145, Processing Time 0.021 seconds

Characteristics of Fish Bone as the Functional Food Additives Produced with Different Softening Methods (연화방법에 따른 기능성 식품 소재로써의 생선뼈의 특성)

  • Lee, Yoonmi;Choi, Jeong Wook;Hwang, Hye Jung;Lee, Min Kyeong;Jeong, Su Jin;Nam, Taek Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.6
    • /
    • pp.631-636
    • /
    • 2019
  • Fish bone-based calcium products are currently receiving much attention among high value-added industries involving calcium. Industrial processing of fish products yields unused fish parts including bones, which could be used as marine health foods to enhance the economic and environmental benefits of fish production. The ultimate goal of this study is to develop the high value-added fisheries products fortified with fish bones supplementing calcium. We here explored the physical and chemical softening methods of the fish bones to enhance texture of the fish products with a high degree of calcium absorption rates. The eluted calcium from the fish bone was quantified with the inductively coupled plasma optical emission spectrometry (ICP-OES). The characteristics of the softened fish bones were determined by the laser diffraction particle size analysis, texture profile analysis, and volatile organic compounds (VOCs) analysis. As the result, the optimized softening method of fish bone was established when Theragra chalcogramma bone was treated twice with the pressurized high temperature (110-120℃ and 1.0-1.5 kg/cm2). The produced softened fish bone turned out to be suitable for the food additives with low particle sizes, low hardness values, and negligible VOCs responsible for the unpleasant flavors.

Processing and quality stability of precooked frozen fish foods : (II) Quality stability of sardine burger (조리냉동식품의 가공 및 저장 중 품질안정성 : (II) 정어리버어거의 동결저장 안정성)

  • Ihm, Chi-Won;Kim, Jin-Soo;Joo, Dong-Sik;Lee, Eung-Ho
    • Applied Biological Chemistry
    • /
    • v.35 no.4
    • /
    • pp.260-264
    • /
    • 1992
  • In present paper, we investigated the quality stability of sardine burgers during storage at $-20{\pm}2^{\circ}C$. During frozen storage of sardine burger, the PH were decreased, while volatile basic nitrogen contents were increased. The results of changes in peroxide values, thiobarbituric acid values, fatty acid compositions and color values during frozen storage showed that lipid oxidation and discolorization of antioxidant treated sardine burger and vacuum packed sardine burger could be effectively retarded. The changes in the taste compounds such as free amino acid, nucleotide and their related compounds, total creatinine, betaine and trimethylamine oxide, total amino acids and texture profile analysis of vacuum packed sardine burger were negligible during frozen storage. From the results of sensory evaluation and chemical experiments, the vacuum packed sardine burger could be preserved in good quality during frozen storage of 90 days.

  • PDF

The Influence of $O_2$ Gas on the Etch Characteristics of FePt Thin Films in $CH_4/O_2/Ar$ gas

  • Lee, Il-Hoon;Lee, Tea-Young;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.408-408
    • /
    • 2012
  • It is well known that magnetic random access memory (MRAM) is nonvolatile memory devices using ferromagnetic materials. MRAM has the merits such as fast access time, unlimited read/write endurance and nonvolatility. Although DRAM has many advantages containing high storage density, fast access time and low power consumption, it becomes volatile when the power is turned off. Owing to the attractive advantages of MRAM, MRAM is being spotlighted as an alternative device in the future. MRAM consists of magnetic tunnel junction (MTJ) stack and complementary metal- oxide semiconductor (CMOS). MTJ stacks are composed of various magnetic materials. FePt thin films are used as a pinned layer of MTJ stack. Up to date, an inductively coupled plasma reactive ion etching (ICPRIE) method of MTJ stacks showed better results in terms of etch rate and etch profile than any other methods such as ion milling, chemical assisted ion etching (CAIE), reactive ion etching (RIE). In order to improve etch profiles without redepositon, a better etching process of MTJ stack needs to be developed by using different etch gases and etch parameters. In this research, influences of $O_2$ gas on the etching characteristics of FePt thin films were investigated. FePt thin films were etched using ICPRIE in $CH_4/O_2/Ar$ gas mix. The etch rate and the etch selectivity were investigated in various $O_2$ concentrations. The etch profiles were studied in varying etch parameters such as coil rf power, dc-bias voltage, and gas pressure. TiN was employed as a hard mask. For observation etch profiles, field emission scanning electron microscopy (FESEM) was used.

  • PDF

Development of Source Profiles and Estimation of Source Contribution for VOCs by the Chemical Mass Balance Model in the Yeosu Petrochemical Industrial Complex (여수석유화학산단 내 VOCs에 대한 오염원 분류표의 개발 및 CMB 모델에 의한 기여도 산정)

  • Jeon Jun-Min;Hur Dong;Kim Dong-Sul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.83-96
    • /
    • 2005
  • The purposes of this study were to characterize the local levels of VOCs (volatile organic compounds), to develop source profiles of VOCs, and to quantify the source contribution of VOCs using the CMB (chemical mass balance) model. The concentration of VOCs had been measured every 6-day duration in the SRO monitoring site in the Yeosu Petrochemical Industrial Complex from September 2000 to August 2002. The total of 35 target VOCs, which were included in the TO-14 designated from the U.S. EPA, was selected to be monitored in the study area. During a 24-h period, the ambient VOCs were sampled by using canisters placing about 10 ~ 15 m above the ground level. The collected canisters were then analyzed by a GC-MS in the laboratory. Aside from ambient sampling at the SRO site, the VOCs had been intensively and massively measured from 8 direct sources and 4 general sources in the study area. The results obtained in the study were as follows; first, the annual mean concentrations of the target VOCs were widely distributed regardless of monitoring sites in the Yeosu Petrochemical Industrial Complex. In particular, the concentrations of BTX (Benzene, Toluene, Xylene), vinyl chloride were higher than other target compounds. Second, based on these source sample data, source profiles for VOCs were developed to apply a receptor model, the CMB model. Third, the results of source apportionment study for the VOCs in the SRO Site were as follows; The source of petrochemical plant was apportioned by 31.3% in terms of VOCs mass. The site was also affected by 16.7% from wastewater treatment plant, 14.0% from iron mills, 8.4% from refineries, 4.4% from oil storage, 3.8% from automobiles, 2.3% from fertilizer, 2.3% from painting, 2.2% from waste incinerator, 0.6% from graphic art, and 0.4% from gasoline vapor sources.

Evaluating the Headspace Volatolome, Primary Metabolites, and Aroma Characteristics of Koji Fermented with Bacillus amyloliquefaciens and Aspergillus oryzae

  • Seo, Han Sol;Lee, Sunmin;Singh, Digar;Park, Min Kyung;Kim, Young-Suk;Shin, Hye Won;Cho, Sun A;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1260-1269
    • /
    • 2018
  • Production of good Koji primarily depends upon the selection of substrate materials and fermentative microflora, which together influence the characteristic flavor and aroma. Herein, we performed comparative metabolomic analyses of volatile organic compounds (VOCs) and primary metabolites for Koji samples fermented individually with Bacillus amyloliquefaciens and Aspergillus oryzae. The VOCs and primary metabolites were analyzed using headspace solid phase microextraction (HS-SPME) followed by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). In particular, alcohols, ketones, and furans were mainly detected in Bacillus-fermented Koji (Bacillus Koji, BK), potentially due to the increased levels of lipid oxidation. A cheesy and rancid flavor was characteristic of Bacillus Koji, which is attributable to high content of typical 'off-flavor' compounds. Furthermore, the umami taste engendered by 2-methoxyphenol, (E,E)-2,4-decadienal, and glutamic acid was primarily detected in Bacillus Koji. Alternatively, malty flavor compounds (2-methylpropanal, 2-methylbutanal, 3-methylbutanal) and sweet flavor compounds (monosaccharides and maltol) were relatively abundant in Aspergillus-fermented Koji (Aspergillus Koji, AK). Hence, we argue that the VOC profile of Koji is largely determined by the rational choice of inocula, which modifies the primary metabolomes in Koji substrates, potentially shaping its volatolome as well as the aroma characteristics.

A Study on the 'Extended' DSM Programs in Korean LNG Market (산업용 천연가스 수요관리 프로그램 최적화를 위한 동태적 시뮬레이션에 관한 연구)

  • Chang, Han-Soo;Choi, Ki-Ryun
    • Environmental and Resource Economics Review
    • /
    • v.11 no.2
    • /
    • pp.211-231
    • /
    • 2002
  • This paper summarizes the results of a study that assess how a demand side management (DSM) system addresses key economic and environmental challenges facing in the Korean natural gas sector considering; ${\bullet}$ high discrepancies of seasonal consumption volume and of load factor in unmatured domestic LNG market, ${\bullet}$ unfavorable and volatile international LNG market, imposing with the contestable "take-or-pay" contract terms, ${\bullet}$ low profile of LNG and existence of market barriers against an optimal fuel mix status in the industrial energy sector. A particular focus of this study is to establish an 'extended' DSM system in the unmatured gas market, especially in industry sector, that could play a key role to assure an optimum fuel mix scheme. Under the concept of 'extended' DSM, a system dynamics modeling approach has been introduced to explore the option to maximize economic benefits in terms of the national energy system optimization, entailing different ways of commitments accounting for different DSM measures and time delay scenarios. The study concludes that policy options exist that can reduce inefficiencies in gas industry and end-use system at no net costs to national economy. The most scenarios find that, by the year 2015, it is possible to develop a substantial potential of increased industrial gas end-uses under more reliable and stable load patterns. Assessment of sensitivity analysis suggests that time delay factor, in formulating DSM scenarios, plays a key role to overcome various market barriers in domestic LNG market and provides a strong justification for the policy portfolios 'just in time' (time accurateness), which eventually contribute to establish an optimum fuel mix strategy. The study indicates also the needs of advanced studies based on SD approach to articulate uncertainty in unmatured energy market analysis, including gas.

  • PDF

A study on the screening of toxic materials by HPTLC and GC/MS (HPTLC 및 GC/MS를 이용한 유해화학물질의 스크리닝에 관한 연구)

  • Park, Sung-Woo;Jang, Seong-Gil;Park, You-Sin;Lee, Jin-Hoon;Lee, Sang-Ki;You, Jae-Hoon;Kim, Dong-Hwan;Jin, Kwang-Ho;Kim, Ki-Wook;Kim, Yu-Na;Lho, Dong-Seok
    • Analytical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.108-120
    • /
    • 2000
  • To perform an effective screening for toxic materials of forensic interest detected in high profile criminal case in biological and environmental samples, we tried to construct a searchable computerized database using HPTLC(High Performance Thin Layer Chromatography) and GC/MS. Retardation factor($R_f$) values and UV spectral data of HPTLC were investigated for 160 pesticides, 34 chemicals and 39 explosives of standard grade. The data were compiled in a library. We also analyzed 112 pesticides, 31 chemicals and 17 explosives and 57 volatile organic compounds(VOCs) by GC/MS. The data for RT and characteristic mass ions were also compiled in a library.

  • PDF

Effect of Allium hookeri Root on Physicochemical, Lipid, and Protein Oxidation of Longissimus Dorsi Muscle Meatball

  • Yoon, Dong-kyu;Kim, Ji-Han;Cho, Won-Young;Ji, Da-Som;Lee, Ha-Jung;Kim, Jung-Ho;Lee, Chi-Ho
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1203-1215
    • /
    • 2018
  • The antioxidant effects of Allium hookeri root (AHR) were investigated by evaluating lipid and protein oxidation in meatballs during refrigerated storage at $4{\pm}1^{\circ}C$. AHR was mixed at concentrations of 0.5% (w/w, T2) and 1% (w/w, T3) with minced longissimus dorsi muscle. Meatballs containing AHR (T2 and T3) were compared to those containing 0.05% (w/w) ascorbic acid (T1) as a reference and without antioxidant as a control. The 2-thiobarbituric acid reactive substances (TBARS) value, disulfide bond formation, carbonyl contents, and volatile basic nitrogen (VBN) value of T2 were lower than those of the control during storage (p<0.05). The pH values of T2 and T3 were higher than that of the control (p<0.05). Texture profile analysis of T2 revealed a lower value compared to the control (p<0.05). Therefore, the VBN value, TBARS value, disulfide bond formation, and carbonyl content in meatball containing AHR were lower than those of the control meatball. These results indicate that AHR improves the quality of meat products and functions as an antioxidant.

Effects of wilting and additives on the ensiling quality and in vitro rumen fermentation characteristics of sudangrass silage

  • Wan, Jiang Chun;Xie, Kai Yun;Wang, Yu Xiang;Liu, Li;Yu, Zhu;Wang, Bing
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.56-65
    • /
    • 2021
  • Objective: This study was conducted to investigate the effects of molasses and Lactobacillus plantarum on the ensiling quality and in vitro rumen fermentation of sudangrass silage prepared with or without wilting. Methods: The ensiling experiment, measured with 3 replicates, was carried out according to a 2×4 (wilted stages×additives) factorial treatment structure. Dry matter of the fresh (210 g/kg fresh matter) or wilted (305 g/kg fresh matter) sudangrass were ensiled (packed into 5.0-L plastic jars) without additive (control) or with molasses (M), Lactobacillus plantarum (LP), or molasses + Lactobacillus plantarum (M+LP). After 60 days of ensiling, the silages were analyzed for the chemical, fermentation, and in vitro characteristics. Results: After 60 days of ensiling, the fermentation parameters were affected by wilted, the additives and the interactions of wilted with the additives (p<0.05). The M+LP treatment at wilted had higher lactic acid levels and V-score (p<0.05) but lower pH values and butyric acid concentrations than the other treatments. In comparison with sudangrass before ensiling, after ensiling had lower dry matter and higher non-fibrous carbohydrate. The in vitro gas production, in vitro dry matter digestibility, in vitro crude protein digestibility, and in vitro acid fiber detergent digestibility changed under the effects of the additives. Significant interactions were observed between wilted and the additives in terms of in vitro gas production at 48 h, asymptotic gas production, gas production rate, half time, and the average gas production rate. The total volatile fatty acid levels in the additive treatments were higher than those in the control. Conclusion: Wilting and supplementation with molasses and Lactobacillus plantarum had the ability to improve the ensiling quality and in vitro nutrient digestibility of sudangrass silage. The M+LP treatment at wilted exhibited the strongest positive effects on silage quality and in vitro ruminal fermentation characteristics.

Effective Removal of Gaseous BTEX Using VPB During Treatment of Briny Produced Water (VPB를 이용한 효율적인 Gas 상태의 BTEX 제거에 관한 연구)

  • Kwon, Soondong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.167-177
    • /
    • 2011
  • Billions of barrels of briny produced water are generated in the United States every year during oil and gas production. The first step toward recovering or reusing this water is to remove the hazardous organics dissolved in the briny produced water. Biological degradation of hazardous volatile compound could be possible regardless of salinity if they were extracted from briny water. In the current work, the effectiveness of a vapor phase biofilter to degrade the gas-phase contaminants (benzene, toluene, ethylbenzene and xylenes, BTEX) extracted from briny produced water was evaluated. The performance of biofilter system responded well to short periods when the BTEX feed to the biofilter was discontinued. To challenge the system further, the biofilter was subjected to periodic spikes in inlet BTEX concentration as would be expected when it is coupled to a Surfactant-Modified Zeolite (SMZ) bed. Results of these experiments indicate that although the BTEX removal efficiency declined under these conditions, it stabilized at 75% overall removal even when the biofilter was provided with BTEX-contaminated air only 8 hours out of every 24 hours. Benzene removal was found to be the most sensitive to time varying loading conditions. A passive, granular activated carbon bed was effective at attenuating and normalizing the peak BTEX loadings during SMZ regeneration over a range of VOC loads. Field testing of a SMZ bed coupled with an activated carbon buffering/biofilter column verified that this system could be used to remove and ultimately biodegrade the dissolved BTEX constituents in briny produced water.