• Title/Summary/Keyword: volatile oils

Search Result 201, Processing Time 0.033 seconds

Removal of Volatile Organic Compounds (VOCs) of Deodorant by Adding a Metal Oxide to the Essential Oils (식물정유물질에 금속산화물을 첨가한 탈취제의 휘발성유기화합물질의 제거에 관한 연구)

  • Lim, You-Young;Lee, Min-Ho;Jeon, Soo-Bin;Yang, Kyeong-Soon;Jeong, Hae-Eun;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.96-105
    • /
    • 2016
  • VOCs emissions from industries cause the air pollution and odor. In the industrial facilities, the existing odor treatment techniques have limits and problems. In this study, the optimum essential oil and metal oxide selected by screening test. lavender oil, cypress oil and TiO2 were determined by deodorant materials and those were blended by 5%, 45%, 10%, respectively. In addition, the result of batch type experiments depending on the dilution rate, injection, rate, temperature showed that the optimum condition of deodorant is 6 mL of injection rate, and 200 times of dilution rate and the removal efficiency increased in proportion with temperature. In addition, the activation energy was calculated from the rate equation, which appeared in the 3-4 times lower than conventional deodorants.

Identification of Vegetable Oil-added Sesame Oil by a Mass Spectrometer-based Electronic Nose (Mass Spectrometer를 바탕으로 한 전자코를 이용한 식물성 유지가 혼합된 참기름의 판별 분석)

  • Son, Hee-Jin;Hong, Eun-Jeung;Ko, Sanghoon;Choi, Jin Young;Noh, Bong-Soo
    • Food Engineering Progress
    • /
    • v.13 no.4
    • /
    • pp.275-281
    • /
    • 2009
  • Sesame oils are partially mixed with other vegetable oils due to high price in a Korean market. To find out authentic sesame oil, a mass spectrometer-based electronic nose (MS-based E-nose) was used. Sesame oil (Se) was blended with soybean oil (So) or corn oil (Co) at the ratio (Se:So, Se:Co) of 97:3, 94:6, 91:9, 88:12 and 85:15, respectively. Intensities of each fragment from sesame oil by MS-based E-nose were completely different from those of soybean oil or corn oil. The obtained results were used for discriminant function analysis (DFA). Volatile organic components (VOC) of soybean oil or corn oil were similar to those of fresh air and DFA plot indicated a significant separation of pure sesame oil and pure other oil. The group of the mixed oil was seperated with that of sesame oil in DFA plot and the added amount of soybean oil to sesame oil was correlated with discriminant function first score (DF1). MS based E-nose system could be used as an efficient method to investigate the purity of sesame oil.

Studies on the Tobacco Growth Characteristics under Environmental Conditions between KOREA and U.S.A. (한국과 미국의 재배환경 요인과 담배생육비교)

  • 구한서;박현석;유정은;장기운;이용득
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.4
    • /
    • pp.454-464
    • /
    • 1986
  • To find main factors to affect tobacco culture and quality, NC 2326 (Nicotiana tabacum L.) was cultivated in Korea and in the United States under different plant density, fertilization, mulching and curing. Among the chemical characteristics of the both experimental soils, the organic matters were similar concentration in both locations but effective phosphorous contents were higher in Oxford in the United States. Plant height, length and width of the largest leaf, leaf thickness, and midrib ratios were larger in Oxford than in Suwon in Korea. Also they were larger in non mulching system than in mulching system. But the total numbers of the leaves were decreased in non mulching system. The content of nicotine was higher in the plant grown in Suwon than in Oxford. The concentrations of nicotine and sugar tend to increase in mulching system comparing of non mulching system. During the growing, the concentration of non-volatile organic acids was higher in Suwon, while it was lower in cured leaf produced in Suwon. Also the contents of total fatty acids were lower in the harvested leaf grown in Suwon, but not in cured tobacco. Forty three compounds identified among the volatile oils from these experimental samples were quantified. The concentrations of the major components related to the tobacco flavour such as damascone, damascenone, solanone, nor-solanadione, and megastigmatrienones were higher in the cured tobacco produced in Oxford rather than in Suwon.

  • PDF

Evaluation of soybean oil rancidity by pentanal and hexanal determination (Pentanal과 hexanal 측정에 의한 대두유의 산패도 측정)

  • Chun, Ho-Nam;Kim, Ze-Uook
    • Applied Biological Chemistry
    • /
    • v.34 no.2
    • /
    • pp.149-153
    • /
    • 1991
  • Several commercial soybean oils were stored at $20^{\circ}C,\;40^{\circ}C$ and $60^{\circ}C$ with daily exposure of fluorescent light for 12 hours and evaluated their rancidity by headspace gas chromatographic analysis of pentanal and hexanal. The data of gas chromatographic analysis was compared with organoleptic flavor evaluation. For headspace gas chromatographic analysis, the volatile compounds were recovered by porous polymer trap and flushed into a fused silica capillary column at $250^{\circ}C$, The pentanal and hexanal separated were identified by gas chromatography and gas chromatography-mass spectrometric method. The results showed that the contents of pentanal and hexanal were linearly increased during storage for 100 days. A very simple linear relationship was found between organoleptic flavor scores and amounts of two volatile compounds with very high correlation coefficient. A similar linear relationship was also obtained for acid and peroxide value with sensory data. This results suggested the possible implication of pentanal and hexanal as an quality index for rancidity evaluation of soybean oil.

  • PDF

Rancidity Analysis of Rapeseed Oil under Different Storage Conditions Using Mass Spectrometry-based Electronic Nose (질량분석기 기반-전자코를 이용한 저장중 유채유의 산패 분석)

  • Hong, Eun-Jeung;Lim, Chae-Lan;Son, Hee-Jin;Choi, Jin-Young;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.699-704
    • /
    • 2010
  • Rapeseed oil was stored under different conditions such as in the dark, with UV treatment, and with prooxidantscytochrome C and copper ion. The rapeseed oils stored at different temperatures were analyzed by a mass spectrometrybased electronic nose and discriminant function analysis (DFA). Volatile components in the rapeseed oil increased with storage time, and the discriminant function first score (DF1) moved from a positive position to a negative position as storage time increased. Changes in DF1 were higher under UV treatment than under the dark condition (DF1: $r^2$=0.9481, F=307.03). The different DF1 values (F1) under the dark condition were 0.099, 0.187, and 0.278 as storage temperature increased. The different values under UV treatment were 0.554, 0.588, and 0.542, as storage temperature increased from 4 to $26^{\circ}C$. As concentrations of prooxidants copper ion and cytochrome C increased, amounts of volatile components also increased. These were confirmed by DFA. Furthermore, changes in responses at each ion fragment agreed with reported results for GC/MS, which formed after rancidity of the oil, including pentane, pentanal, 1-pentanol, hexanal, n-octane, 2-hexenal, heptanal, 2-heptenal, decane, 2-octenal, undecane, and dodecane.

A Study on the Volatile Change of Essential Oils Addition on to the Vegetable Fatty Acid Hard Soap (식물성 지방산 고형비누에 첨가된 에센셜오일의 휘발성 변화에 대한 연구)

  • Lee, Sung-Hee;Lee, Ki-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3304-3311
    • /
    • 2014
  • In the saponification to manufacture plant fatty acid hard soap, the drying process is required for its water evaporation and hardness. This study mixed it with essential oil(E.O) with high volatility instead of adding synthetic flavor. And it comparatively observed the duration of flavor changing to the additive ($TiO_2$) and the drying period of the major flavor component (Linalool, Linalyl acetate) in the essential oil (Lavender E.O) contained in the soap during the soap manufacture by using GC-MS. Advanced researches have mostly dealt with the utility of plant hard soap, and those related with the volatility of flavor have been hardly conducted. Regarding the volatility of linalool contained in the soap, the soap mixed with $TiO_2$ showed a higher reduction ratio up to the 12th week; however, at the point of the 20th week, it reduced to a similar level. Although Linalyl acetate did indicate a slight difference according to the mixture of $TiO_2$, the volatility was shown similar up to the point of the 20th week. During the 20 weeks of drying, the residual rate of linalool was found to be higher than that of Linalyl acetate regardless of the mixture of $TiO_2$. It has been found that the flavor component of lavender essential oil with the duration of two or so days at the room temperature remains for 20 weeks (or 5 months) when it is manufactured through the mixture of plant fatty acid hard soap.

Monitoring of Benzene, Toluene, Ethylbenzene and Xylene (BTEX) Residues in Arable Lands around Oil Reservoir (유류저장시설 인근 농경지 중 Benzene, Toluene, Ethylbenzene 및 Xylene (BTEX) 잔류량 모니터링)

  • Lim, Sung-Jin;Kim, Jin-Hyo;Choi, Geun-Hyoung;Cho, Nam-Jun;Hong, Jin-Hwan;Park, Byung-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.414-418
    • /
    • 2014
  • BACKGROUND: Benzene, toluene, ethylbenzene and xylene (BTEX), which are volatile aromatic hydrocarbons and main constituents of gasoline, are neuro-carcinogenic organic pollutants in soil and groundwater. Korea Ministry of Environment has established the maximum permissible level of BTEX in arable soil to 1, 20, 50 and 15 mg/kg, respectively. METHODS AND RESULTS: To understand an arable soil contamination by BTEX, we collected 92 samples from the arable lands around oil reservoir, and analyzed the BTEX residue using a GC-MS with head-space sampler. A linear correlation between BTEX concentration and peak areas was detected with coefficient correlations in the range of 0.9807-0.9995. The method LOQ of BTEX was 0.002, 0.014, 0.084, and 0.038 mg/kg, respectively. Recoveries of 0.5 mg/kg BTEX were found to be 73.7-96.9%. The precision was reliable since RSD percentage (0.7-7.5%) was below 30, which was the normal percent value. Also, BTEX in all samples were detected under the LOQ. CONCLUSION: These results showed that the investigated arable soils around airport and oil reservoir in Korea were not contaminated by oils.

Functional Ingredients of Perilla Frutescens L. Britt Extracts and Preparation of PVA Nanoweb Containing Extracts (자소 추출물의 기능성 성분과 자소 추출물을 함유하는 PVA 나노 섬유의 제조)

  • Wang, Qian Wen;Lee, Jung-Soon
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.256-267
    • /
    • 2017
  • The purpose of this study was to analyze the functional ingredients of Perilla Frutescens L. Britt extracts and to confirm the possibility of producing PVA nanofibers using extracts. Distilled water, 3% aqueous sodium hydroxide solution and ethanol were used as extraction solvents. The electrospinning was carried out at a PVA concentration of 12%, an applied voltage of 10 kV and a tip to collector distance of 15cm. The contents of volatile substances, essential oils, total polyphenols and flavonoids of the extracts were measured to examine the constituents of functional materials. Flavor components and esters were identified in 3% sodium hydroxide and ethanol extracts. The content of polyphenols and flavonoids in ethanol extracts was higher than that of medicinal plants. 1wt.% of Tween 20 was added to disperse the essential oil components of the ethanol extract. Addition of a dispersant made it possible to produce a homogeneous mixture by having some compatibility with the ethanol extracts and the PVA molecule. When the concentration of the ethanol extract was 0.25 and 0.5wt%, relatively uniform PVA nanofiber having an average diameter of 350 to 365nm could be produced. The results of FT-IR, XRD and DSC analysis confirmed that Perilla Frutescens L. Britt ethanol extract was well mixed with PVA molecules and was electrospun.

Effects of Oil Refining Processes on Oxidative Stability and Antioxidative Substances of Sesame Oil (정제공정이 참기름의 항산화 물질과 산화 안정성에 미치는 영향)

  • Han, Jin-Suk;Moon, Soo-Yeun;Ahn, Seung-Yo
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.15-20
    • /
    • 1997
  • Changes in antioxidative substances-sesamol, sesamin and sesamolin - and mineral contents of sesame oil during refining processes have been studied to investigate the oxidative stability of oils during the storage at $70^{\circ}C$. Fe, Cu, Mg and Zn were nearly removed from the oil by the degumming process. During storage, the changes of total volatile contents in crude and degummed sesame oil were not noticeable but those in alkali-refined and deodorized sesame oil were increased at early period of the storage. The increases of hexanal and pentanal were most noticeable and their concentration was increased markedly in alkali-refined, bleached and deodorized sesame oil at early period of the storage. During refining processes and storage, sesamin was relatively stable but the content of sesamolin was decreased. The content of sesamol was decreased until alkali-refining process but increased during a bleaching process. The content of sesamolin tended to decrease with increasing of sesamol during storage.

  • PDF

Effect of Deodorizing Temperature on Physicochemical Characteristics in Corn Oil IV. Effect of Deodorizing Temperature on Volatile Flavor Component Composition in Corn Oil (탈취온도가 옥수수기름의 이화학적 특성에 미치는 영향 제4보, 탈취온도가 옥수수기름의 휘발성 냄새성분 변화에 미치는 영향)

  • 이근보;한명규;이미숙
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.3
    • /
    • pp.272-277
    • /
    • 1998
  • We carried out separation and guantitation of flavor components by GC about essential oils extracted from deodorized corn oil at the different deodorizing temperature. Flavor components were detected total 16 kinds included aldehydes of 8 kinds, major components were propane, pentane, hexanal etc. These major components content was about 70~75% of the total flavor components. According to rise of deodorizing temperature, both ethane and aldehydes of 8 kinds content were in proportion to increase, but propane, pentane, hexane, octan, pentyl furan content were decreased by contraries, respectively. On the other hand, total flavor component content was appeared the lowest level at 245$^{\circ}C$ treating group, aldehydes content was in proportion to increase according to rise of deodorizing temperature. These phenomenons consider that the undesirable reactions such as partial auto-oxidation, degradation, polymerization and hydrolysis etc. by effecting factors of stripping steam and vacuum degree. Conclusively, deodorizing temperature under high temperature was undesirable for the minimization of off-flavor materials.

  • PDF