• Title/Summary/Keyword: volatile flavor extracts

Search Result 49, Processing Time 0.021 seconds

Effect of Rosemary Extract on Lipid Oxidation, Fatty Acid Composition, Antioxidant Capacity, and Volatile Compounds of Salted Duck Eggs

  • Harlina, Putri Widyanti;Ma, Meihu;Shahzad, Raheel;Khalifa, Ibrahim
    • Food Science of Animal Resources
    • /
    • v.42 no.4
    • /
    • pp.689-711
    • /
    • 2022
  • The purpose of our study was to determine the impact of rosemary extract in duck eggs, as determined by in vitro antioxidant capacity, lipid oxidation, fatty acid profiles, and flavor analyses. Three groups of salted duck eggs were compared: A control group and group enriched with 0.1% and 0.5% (w/v) rosemary extracts for 28 days of salting. In a time-dependent manner, the radical scavenging activity and reduction power of eggs with 0.5% (w/v) rosemary extract were significantly higher those of the control at 28 days after salting. The fatty acid profiles of salted egg were significantly affected by rosemary extract and salting time. Palmitic acid was the most abundant fatty acid in salted egg treated with rosemary extract, followed by linoleic acid and arachidonic acid. Furthermore, the treated eggs contained more docosahexaenoic acid than the control ones. And the treated eggs also have a considerable impact on the lipid oxidation process (primary and secondary oxidation). As a result, rosemary extract can be used as a natural antioxidant spice to prevent oxidation and extend the shelf life of eggs during storage. Furthermore, flavor research using solid phase microextraction - gas chromatography - mass spectrometry and an electronic nose demonstrated that adding rosemary extract to salted eggs could give them a distinct flavor.

Formation of Volatile Compounds from Maillard Reaction of D-Glucose with DL-Alanine in Propylene Glycol Solution (Propylene Glycol 용매계에서 DL-Alanine과 D-Glucose의 마이야르 반응에 의한 휘발성 화합물의 생성)

  • Kim, Young-Hoi;Kim, Ok-Chan;Lee, Jung-Il;Yang, Kwang-Ku
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.157-163
    • /
    • 1988
  • The volatile compounds produced from the browning reaction of 0.5M DL-alanine and 0.5M D-glucose mixture using propylene glycol as a reaction medium were analysed by gas chromatography and gas chromatography-mass spectrometry and effects of temperature($100^{\circ}C,\;120^{\circ}C,\;140^{\circ}C$) and time(20min, 2hours) on the formation of volatile compounds were investigated. Browning reaction were rapidly increased as the reaction temperature and time increased. From methylene chloride extracts, twenty six compounds, including 7 alkyl pyrazines. 4 pyrroles, 3 furans, 1 furanone and 11 miscellaneous compounds were identified. The relative amounts of pyrazines, pyrroles and furans were markedly increased as reaction temperature and time increased. The results showed that caramel-like and burnt sugar-like aroma produced by alanine -glucose reaction must be mainly comprised of nitrogeneous heterocyclic such as pyrazines, pyrroles and oxygen heterocyclic compounds such as 2-hydroxy-3-methyl-2-cyclopenten-1-one and 2,5-dimethyl-4-hydroxy-3(2H)-furanone.

  • PDF

Low-Temperature Microencapsulation of Sesame Oil Using Fluidized Bed Granulation (Fluidized bed granulation을 이용한 참기름의 저온 미세캡슐화)

  • Jeong, Chan-Min;Lee, Min-Kyung;Lee, Hyun-Ah;Park, Ji-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.27-31
    • /
    • 2009
  • Top spray-drying method is frequently utilized for flavor encapsulation, but the top spray-dried products frequently suffer from high losses of volatile flavor as the result of a high processing temperature (150-$300^{\circ}C$). In an effort to solve these problems, a low-temperature fluidized-bed granulating method was utilized to encapsulate the flavor. For the encapsulation of sesame oil, oil-in-water emulsions of sesame oil and a mixture of maltodextrin, modified starch, gum arabic, and gellan gum were bottom-sprayed at milder temperatures (70-$100^{\circ}C$) using a fluidized-bed granulator. Sesame oil extracts from microcapsules were obtained via a simultaneous distillation/extraction technique, and the retention of volatile flavor compounds was analyzed via a gas chromatography-mass spectrometry. The retention of volatile flavors of sesame oil per se, spray-dried and fluidized-bed granulated microcapsules after 3-day-storage at $37^{\circ}C$ were 0.8%, 37.2%, and 42.0%, respectively. In addition, the low-temperature fluidized-bed granulation showed higher encapsulation yield and sensory preferences for the application of commercial products (beef rice porridge), as compared to spray drying.

Volatile Compounds of Chonggugjang Prepared by Different Fermentation Methods and Soybean Cultivars (발효방법 및 대두품종을 달리한 청국장의 향기성분)

  • Yoo, Seon-Mi;Kim, Haeng-Ran;Kim, Jin-Sook;Chang, Chang-Moon;Choe, Jeong-Sook
    • Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.111-115
    • /
    • 1999
  • This study was attempted to develop technique of masking the pungent odor of chonggugjang using two-stage fermentation method with mixed pure cultures. Cooked soybeans were fermented with Lactobacilli or Aspergillus oryzae at $38^{\circ}C$ for 36 hrs, and then re-fermented with Bacillus subtilis for 12 hrs. The volatile compounds of chonggugjang were obtained with a SDE(Simultaneous steam Distillation and solvent Extraction) system and the extracts were identified by GC and GC-MS. The experimental results revealed the presence of 35 volatile compounds in control chonggugjang(only Bacillus subtilis inoculation). Among them, the major volatile compounds were 2,5-dimethyl pyrazine, 2,3,5-trimethyl pyrazine and 2-methyl pyrazine. Twenty-nine kinds of volatile compounds were in chonggugjang prepared by two-stage fermentation method with Lactobacilli and Bacillus subtilis(II), and major volatile compounds were identified to be 2,3,5-trimethyl pyrazine and 2,5-dimethyl Pyrazine. In chonggugjang(Asp. oryzae and then Bacillus subtilis inoculation(III)), the contents of hexadecanoic acid and 2-methyl pyrazine were patricularly high and the main components of chonggugjang fermented with rice straw(IV) were 2,5-dimethyl pyrazine, 2,3,5-trimethyl pyrazine etc. In conclusion, the flavor compounds such as 2, 5-dimethyl pyrazine, 2,3,5-trimethyl pyrazine and 2-methyl pyrazine were increased by the inoculation of Lactobacilli or Asp. oryzae, where as unpleasant odor components-butyric acid and valeric acid were decreased. Compared with volatile compounds of chonggugjang made from different soybean cultivars, the flavor compounds (2-methyl pyrazine 2,5-dimethyl pyrazine 2,6-dimethyl pyrazine 2,3-dimethyl pyrazine 2-acetyl pyrazine 2,3,5-trimethyl pyrazine 2-ethyl-3,5-dimethyl pyrazine) of chonggugiang prepared with Sinpaldalkong were high.

  • PDF

Changes of Volatile Components in Extracts of Bovine Bone Using an Electronic Nose and Fourier Transform-Near Infrared Spectrometer (전자코와 푸리에 변환 근적외선 분광기를 사용한 사골 추출물의 향기 성분 변화 분석)

  • Jang, Nak-Hoon;Cho, Yon Soo;Park, Su Won;Dong, Hyemin;Han, Hyun Jung;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.734-738
    • /
    • 2014
  • This study was conducted to investigate whether four hot-water extraction steps could effectively remove off-flavor from bovine bone extracts and produce compounds with pleasant aroma. Experiments were performed using a mass spectrometry-electronic nose and Fourier transform-near infrared spectrometer (FT-NIR). Off-flavor compounds were removed by washing and extraction with hot water. Steaming treatment produced compounds with a better aroma, such as 4-methylthiazole. In addition, a change in flavor compounds was observed in treated samples.

Effects of Antioxidant and Flavor Compionents of Zingiber mioga Rosc (양하의 항산화 효과 및 향기성분)

  • Lee, Jang-Won;Chon, Sang-Uk;Han, Seung-Kwan;Ryu, Jeong;Choi, Dong-Geun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.3
    • /
    • pp.203-209
    • /
    • 2007
  • In order to promote utilization of the Yangha (Zinger mioga Rosc.) as functional food and natural spices, and 95.93%, from the dried one 7.63%, and from powder 9.81%, respectively. Crude protein content from the Yangha powder was 11.21%, and contents of crude fat, crude ash and crude fiber were 2.44%,10.78%, and 14.47%, respectively. Most of compositions from Yangha powder were higher than those from raw and the dried one, except fer water content. Antioxidative effect was investigated through Rancimat and DPPH methods. Oxidative stability of Yangha powder was the highest of4.21Al. Furthermore, the free radical scavenging activity of Yangha powder (76.61%) was higher than that of raw (49.35%) or the dried one (61.78%). Volatile flavor compounds of Yangha was extracted by steam distillation and extraction method. The extracts were analyzed and identified by gas chromatography and GC-MS spectrometry. One hundred twenty two volatile flavor components were identified, and the major component was terpene compounds including ${\alpha}$-pinene, ${\beta}$-pinene, ${\beta}$-phellandrene, 1,4-terpineol, and ${\beta}$-terpinene.

Anti-Inflammatory Effects of Volatile Flavor Extract from Herbal Medicinal Prescriptions Including Cnidium officinale Makino and Angelica gigas Nakai (천궁 및 당귀를 함유한 한방처방제 휘발성 향기추출물의 항염증 효과)

  • Leem, Hyun-Hee;Kim, Eun-Ok;Seo, Mi-Jae;Choi, Sang-Won
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.3
    • /
    • pp.199-210
    • /
    • 2011
  • This study was conducted to develop functional sources of herbal cosmetics for treatment of skin aging and inflammatory disorders using volatile flavor extracts of four different herbal medicinal prescriptions including Cnidium officinale Makino (COM), Angelica gigas Nakai (AGN), Mentha arvense L. (MAL), Artemisiae argyi Folium (AAF), Paeonia lactiflora Pall (PLP), Rehmanniae Radix Preparata (RRP), Scutellaria baicalensis Georgi (SBG), Panax ginseng C.A. Meyer (PGM), Glycyrrhiza uralensis Fisch (GUF). The volatile flavor extracts of four different herbal medicinal prescriptions (HH-1: COM, AGN, PLP, RRP, HH-2: COM, AGN, PLP, RRP, SBG, PGM, GUF, HH-3: COM, AGN, MAL, AAF, HH-4: COM, AGN, MAL, AAF, SBG, PGM, GUF) were extracted using SDE and their antioxidant and anti-inflammatory effects were measured by using DPPH radical and SLO, respectively. As a result, HH-2 showed moderate DPPH radical scavenging activity (68.24 %) and the strongest SLO inhibitory activity (83.96 %) at 100 ${\mu}g$/mL. Moreover, HH-2 of four different prescriptions significantly inhibited NO production on LPS-stimulated RAW 264.7 cells in a dose-dependent manner without considerable cell cytotoxicity at range of 2.0 ~ 50 ${\mu}g$/mL. Additionally, HH-2 also effectively suppressed the production of $PGE_2$ and IL-6, which are responsible for promoting the inflammatory process. Major volatile components of HH-2 were identified as eugenol, paeonol, butyl phthalide, ${\beta}$-eudesmol and butylidene dihydrophthalide by GC-MS analysis. Thus, these results suggest that HH-2 may be useful as a potential source of anti-inflammatory agents in herbal medicinal cosmetics.

Functional Ingredients of Perilla Frutescens L. Britt Extracts and Preparation of PVA Nanoweb Containing Extracts (자소 추출물의 기능성 성분과 자소 추출물을 함유하는 PVA 나노 섬유의 제조)

  • Wang, Qian Wen;Lee, Jung-Soon
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.256-267
    • /
    • 2017
  • The purpose of this study was to analyze the functional ingredients of Perilla Frutescens L. Britt extracts and to confirm the possibility of producing PVA nanofibers using extracts. Distilled water, 3% aqueous sodium hydroxide solution and ethanol were used as extraction solvents. The electrospinning was carried out at a PVA concentration of 12%, an applied voltage of 10 kV and a tip to collector distance of 15cm. The contents of volatile substances, essential oils, total polyphenols and flavonoids of the extracts were measured to examine the constituents of functional materials. Flavor components and esters were identified in 3% sodium hydroxide and ethanol extracts. The content of polyphenols and flavonoids in ethanol extracts was higher than that of medicinal plants. 1wt.% of Tween 20 was added to disperse the essential oil components of the ethanol extract. Addition of a dispersant made it possible to produce a homogeneous mixture by having some compatibility with the ethanol extracts and the PVA molecule. When the concentration of the ethanol extract was 0.25 and 0.5wt%, relatively uniform PVA nanofiber having an average diameter of 350 to 365nm could be produced. The results of FT-IR, XRD and DSC analysis confirmed that Perilla Frutescens L. Britt ethanol extract was well mixed with PVA molecules and was electrospun.

Aroma Characteristics of Acai Berry (아사이베리의 향기성분 특성 연구)

  • Lim, Seung-Hee;Nam, Heesop;Baek, Hyung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.122-127
    • /
    • 2016
  • The objective of this study was to identify the volatile compounds and aroma-active compounds from acai berry (Euterpe oleracea). Volatiles were isolated by high vacuum distillation using solvent-assisted flavor evaporation (SAFE) and liquid-liquid continuous extraction (LLCE). To identify the characteristic aroma-active compounds of acai berry, gas chromatography-mass spectrometry-olfactometry was used. Aroma-active compounds were evaluated by aroma extract dilution analysis (AEDA). A total of 51 and 54 volatile compounds from acai berry were identified from SAFE and LLCE extracts, respectively. Alcohols were confirmed to be important volatile compounds in acai berry, as the major volatile compounds were 2-phenylethanol, (Z)-3-hexenol, and benzyl alcohol. ${\beta}-Damascenone$ (berry, rose), trans-linalool oxide (woody), (Z)-3-hexenol (grass), and 2-phenylethanol (rose, honey) were considered the aroma-active compounds in acai berry. The most intense aroma-active compound of acai berry was ${\beta}-damascenone$.

Effects of Roasted Cassia tora L. Extracts on the Chemical Changes and Microbial Growth (열처리가 결명자의 화학성분 변화 및 추출물의 균체증식에 미치는 영향)

  • Yun, Jong-Bum;Kim, Kyeong-Gu;Sa, Tong-Min;Lee, Young-Tack;Joo, Hyun-Kyu
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.472-477
    • /
    • 1997
  • The effects of roasting Cassia tora L. were investigated for proximate composition, color, volatile flavor profile, microbial growth and alcohol fermentation. While moisture, protein and fat contents decreased with increasing roasting temperature, fiber and ash contents increased. The L, a and b values of Cassia tora L. extracts decreased with increasing temperature, and only a small difference in total color difference$({\Delta}E)$ was observed. A little difference in major flavor components between raw and roasted treatment was found during roasting. Furfuryl alcohol, a major component of coffee flavor, was separated from Cassia tora L. extracts extracted with ethyl ether. The yeast growth was the highest on the water-extract of Cassia tora L. roasted at $160^{\circ}C$. With increased levels of water-extract at $160^{\circ}C$, S. cerevisiae grew rapidly for 24 hr incubation and the growth rate was higher than the unroasted control group. The growth rate of Bacillus subtilis was the highest in a treatment of 0.5% concentration. Little differences in ${\alpha}-amylase$ produced from Bacillus subtilis were observed among the treatment groups. The total alcohol content increased with increasing roasting temperature during alcohol fermentation.

  • PDF