• Title/Summary/Keyword: volatile flavor compounds

Search Result 473, Processing Time 0.025 seconds

Flavor and Taste-Active Compounds in Blue Mussel Hydrolysate Produced by Protease

  • Cha, Yong-Jun;Kim, Hun;Jang, Sung-Min
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.1
    • /
    • pp.15-21
    • /
    • 1998
  • Volatile flavor compounds in hydrolyzed blue mussel(HBM) produced by OptimaseTM APL-440, with untreated blue mussel(UBM) were compared. A total of 100 volatile compounds were detected in both HBM and YBM , consisting mainly of 25 aldehydes, 16 ketones, 17 alcohols, 8 nitrogen-containing compounds, 11 aromatic compounds, 8 terpenes, and 15 miscellaneous compounds. Levels of aromiatic compounds decreased after hydrolysis, whereas levels of 7 nitrogen-containing compounds increased. The compounds , 3-methylbutanal, (z)-4-heptenal, and (E,Z)-2-, 6-nonadienal , had the highest odor values in both samples. Total free amino acids in HBM were 21.89%(w/w) and increased by 3,4 times higher than UBM. glutamic acid and aspartic acid, having sour tastes, were the major taste-active compounds in HBM.

  • PDF

Analysis of Nutritional and Volatile flavor Compounds of Garlic Shoot (마늘순의 영양적 성분 및 향기 성분 분석)

  • 김미연;정신교
    • Food Science and Preservation
    • /
    • v.4 no.1
    • /
    • pp.61-68
    • /
    • 1997
  • To enhance the utilization of garlic shoots as food material, the nutritional and volatile flavor com pounds were investigated for garlic shoots, both cold and warm region type garlic shoots. Proximate composition of cold and warm region type was as follows, respectively; crude protein 2%, crude lipid 0.4%, crude ash 1.1% and 1.5%, crude fiber 1.3% and 1.5%. The major fatty acids of 2 varieties of garlic shoots were linoleic, palmitic and linolenic acid, and their desaturation ratio of them was comparatively high, showing 73.7 and 66.8%, respectively. Free sugars were composed of glucose, sucrose, fructose, arabinose and sorbitol. In the total amino acid analysis, the major amino acids were glutamic acid and aspartic acid. The volatile flavor compounds of fresh garlic shoots extracted by hexane and Likens-Nikerson steam distillation apparatus were identified to be methyl-2-propenyl disulfide, diallyl disufide, propenyl propyl disulfide, di-2-propyl-trisulfide, 2-vinyl-1,3-dithiane, and 2-vinyl-4H-1,3-dithiin. Hexane was more effective than steam distillation for extraction of volatile components of garlic shoots.

  • PDF

Volatile Flavor Compounds and Sensory Properties of Yakju Fermented with Different Contents of Meoru (Vitis coignetiae) (머루 첨가량을 달리한 약주의 향기성분과 관능적 특성)

  • Choi, Sung-Hee;Kwak, Eun-Jung
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.5
    • /
    • pp.642-648
    • /
    • 2012
  • In the present study, yakju was developed added with 100~400 g of meoru (Vitis coignetiae). We analyzed the volatile flavor compounds and investigated the sensory properties of meoru yakju. The volatile flavor compounds were isolated from in fusions by Porapak Q column adsorption. The concentrated flavor extract was analyzed and identified by GC (gas chromatography) and GC-MS (gas chromatography-mass spectrometry) analyses. Thirty-five compounds, including five alcohols, nine esters, seven acids, four hydrocarbons, three ketones, and seven other compounds, were identified. The total number and content of volatile flavor compounds in control yakju were the highest, but they decreased as the amount of added meoru increased. On the other hand, yakju containing 200 g of meoru was characterized by the highest content of ester compounds, and it was the most preferred in terms of flavor, color, taste, and over all acceptability. Based on these results, addition of 200 g of meoru to 1,715 g of control yakju was determined to be the optimal condition for making meoru yakju.

Volatile Flavor Components in Soybean Sprouts (콩나물의 향기 성분 분석)

  • Kim, Yong-Ho;Lee, Kyong-Ae;Kim, Hee-Seon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.3
    • /
    • pp.314-319
    • /
    • 2009
  • The identification of volatile constituents in foods is important in creating flavor compounds to improve the flavor of foods. This study was conducted to identify the flavor compounds in soybean sprouts cultivated with 4 different types of soybean seeds. A total of 52 flavor compounds were identified and composed mainly of alcohols (16), aldehydes (17), ketones (10), acids (2), furans (2), and miscellaneous compounds (5). Sprouts cultivated with Dawonkong and Orialtae showed 46 flavor compounds whereas Pungsannamulkong and Nokchaekong was 49 and 50. In total flavor compounds contents, Orialtae was the highest (19.3 mg/kg RC) and followed by Pungsannamulkong (15.83 mg/kg RC), Dawonkong (13.2 mg/kg RC), and Nokchaekong (11.3 mg/kg RC) in that order. Two groups including alcohols and aldehydes were detected high amounts in which their ratio were analyzed 32% and 51% in total flavor contents, respectively. It may be responsible for flavor in soybean sprouts. In case each flavor compound content, 2-hydroxybenzaldehyde was detected the major compound and hexanol, 1-octen-3-ol, and hexanal that the main compounds in lipid oxidation of soybean products were identified the main volatile flavor compounds in soybean sprouts.

Changes in volatile flavor compounds of radish fermented by lactic acid bacteria (유산균 발효에 따른 무 발효물의 휘발성 향기 성분 변화)

  • Kim, Boram;Cho, Youn-Jeung;Kim, Moonseok;Hurh, Byungserk;Baek, Hyung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.324-329
    • /
    • 2019
  • Volatile flavor compounds of radish fermented by lactic acid bacteria were extracted using solid-phase microextraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 45 volatile flavor compounds were identified. The volatile flavor compounds in unfermented radish mostly consisted of sulfur-containing compounds (95.85%) and aldehydes (2.61%). While the composition ratio of volatile flavor compounds in radish fermented for two days changed to sulfur-containing compounds (75.53%) and acids (11.12%). As the fermentation period was increased, the contents of dimethyl disulfide, dimethyl trisulfide, diallyl sulfide, diallyl disulfide, and diallyl trisulfide, which have unique garlic and scallion flavor, decreased, and acetic acid and 1-hexanol, which have a sour and fruity flavor, increased. These changes in volatile flavor compounds seemed to have affected the flavor characteristics of fermented radish.

Volatile Flavor Compounds in Pen Shell By-product Hydrolysate (키조개 부산물 단백질 가수분해물의 휘발성 향기성분에 관한 연구)

  • Cha, Yong-Jun;Kim, Eun-Jeong
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.964-971
    • /
    • 1995
  • Volatile flavor compounds and free amino acids in untreated and hydrolysate pen shell by-product produced with APL 440 protease were compared by vacuum simultaneous steam distillation-solvent extraction/gas chromatography/mass spectrometry. A total of 109 volatile flavor compounds were detected in hydrolysate (65 compounds) or the 109 volatile flavor compounds were detected in untreated pen shell by-product (88). These compounds were composed of aldehydes(16), ketones(17), alcohols(31), nitrogen containing compounds (16), aromatic hydrocarbon compounds(8), esters(3), and miscellaneous compounds (17). Levels of aldehydes and aromatic hydrocarbons decreased after hydrolysis, whereas levels of nitrogen containing compounds increased 3 times than in untreated pen shell by-product. Taurine, known to be having a physiological function, was accounted for 31.25% of total amino acids in hydrolysate.

  • PDF

Volatile Flavor Compounds from Raw Mugwort Leaves and Parched Mugwort Tea (생쑥과 덖음쑥차의 향기성분)

  • 김영숙;이종호;김무남;이원구;김정옥
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.2
    • /
    • pp.261-267
    • /
    • 1994
  • Parched mugwort tea was manufactured from mugwort (Artemisia asicatica nakai) leaves by traditional green tea preparation method. Volatile flavor compounds were collected by Tenax GC and they separated on DB-5 capillary column ($60m\;\times\;0.25mm$ i.d.) Fifty eight compounds were isolated and identified by GC-MS from the volatiles. Eleven compounds incucluding benzaldehyde, pinene, myrcene, cineole, 2-phrrolidinonoe, camphor, thujong, 1-acetylpiperidine, caryophyllene, coumarin, and farnesol among the compounds identified were considered as important compounds contributing mugwort-like flavor to the parched mugwort tea. The mixture of these eleven authentic compounds could reproduce aroma of mugwort leaves harvested in April. As results, the concentrations of these eleven flavor compounds in parched mugwort tea may indicate the strength of mugwort-like aroma of the tea.

  • PDF

A Comparative Study of the Changes in Volatile Flavor Compounds from Dried Leeks (Allium tuberosum R.) following ${\gamma}$-Irradiation

  • Yang, Su-Hyeong;Shim, Sung-Lye;No, Ki-Mi;Gyawalli, Rajendra;Seo, Hye-Young;Song, Hyun-Pa;Kim, Kyong-Su
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.341-346
    • /
    • 2006
  • This study was performed to examine the effects of ${\gamma}$-irradiation on the volatile flavor compounds of dried leeks (Alliums tuberosum R.). Volatile compounds of dried leeks were extracted using simultaneous steam distillation and extraction (SDE), and analyzed by gas chromatography/mass spectrometry (GC/MS). Forty-one, 51, 45, and 42 compounds were tentatively identified in control, 1, 3, and 10 kGy irradiated samples, respectively. The constituents of flavor compounds in irradiated dried leeks were similar to non-irradiated samples. However, the intensities of the peaks were clearly different between them. Sulfur-containing compounds were detected as dominant compounds in all samples and their amounts decreased after ${\gamma}$-irradiation. ${\gamma}$-Irradiation reduced the total concentration of volatile compounds from leeks by 23.19, 15.09, and 30.23% at 1, 3, and 10 kGy doses, respectively.

Health Promoting Properties of Natural Flavor Substances

  • Jun, Mi-Ra;Jeon, Woo-Sik;Ho, Chi-Tang
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.329-338
    • /
    • 2006
  • The study of health promoting and disease preventing compounds in food or by themselves, so called nutraceuticals or functional foods, has become a major field of research in food science. Natural flavor compounds are usually present in food, essential oils, spices, and herbs. These compounds can produce aroma, not only by themselves, but also in combination with other compounds. Today, however, greater interest is being paid to the health promoting properties of natural flavor substances rather than their flavoring properties. In fact, a number of naturally occurring flavor compounds that possess health promoting and disease preventing properties have been extensively studied and identified. The beneficial properties of natural volatile flavor compounds as well as non-volatile substances in spices and herbs discussed in this review include antioxidant, anticarcinogenic, anti-inflammatory, and immune enhancing activities.

Volatile Flavor Compounds Derived from Anchovy Engraulis japonicus Sauce Residues through Maillard Reactions (멸치(Engraulis japonicus) 액젓 부산물로부터 마이야르 반응을 통해 유도 된 휘발성 향기성분)

  • Jin Hyeon Kim;Yong-Jun Cha;Daeung Yu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.2
    • /
    • pp.174-181
    • /
    • 2023
  • Volatile flavor compounds of optimal Maillard reactions (MR) derived with the addition of precursors (AP), control (without AP) and raw as anchovy Engraulis japonicus sauce residue were identified and comparatively analyzed using solid phase microextraction/gas chromatography/mass spectrometry (SPME/GC/MS). MR was produced by adding 1% (w/w) glucose and mixed amino acids (threonine 0.543%, glutamic acid 0.194%, glycine 0.382%, w/w) to raw (100 g of anchovy sauce residue and 100 mL of distilled water), and heating at 110 ℃ for 2 h. Among 65 flavor components detected, 7 compounds were produced through Maillard reaction to change in content. A total of 7 volatile flavor compounds, including 2-methylbutanal, 3-methylbutanal, dimethyl disulfide, methylpyrazine, dimethyl trisulfide, methional, and 2-furanmethanol, tended to increase in the order of raw, control, and MR, but methylpyrazine was not detected in control. Amounts of 2-methylbutanal, 3-methylbutanal, dimethyl disulfide, methylpyrazine, dimethyl trisulfide, methional, and 2-furanmethanol having positive odors (dark chocolate-, garlic-, hazelnut-, cooked potato-like) were 11.04, 50.15, 3.25, 8.38, 4.60, 9.59, and 3.08 times higher, respectively, in MR than those in raw.