• Title/Summary/Keyword: volatile flavor

Search Result 701, Processing Time 0.03 seconds

Comparison of the volatile flavor compounds in different tobacco types by different extraction methods (추출방법에 따른 잎담배 종류별 휘발성 향기성분 특성비교)

  • Lee, Jang-Mi;Lee, Jeong-Min;Lee, Chang-Gook;Bock, Jin-Young;Hwang, Keon-Joong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.32 no.2
    • /
    • pp.77-87
    • /
    • 2010
  • Traditional simultaneous distillation extraction(SDE) and solid-phase micro extraction(SPME) methods using GC/MS were compared for their effectiveness in the extraction of volatile flavor compounds from different tobacco leaves types(flue-cured, burley, oriental). The major volatile flavor compounds of flue-cured and burley tobacco were similar such as neophytadiene, solanone, megastigmatrienone isomers, ${\beta}$-damascenone and ${\beta}$-ionone. On the other hand, volatile flavor compounds such as norambreinolide, sclareolide were specifically identified in oriental tobacco. Each method was used to evaluate the responses of some analytes from real samples and standards in order to provide sensitivity comparisons between two techniques. Among three types of SPME fibers such as PDMS(Polydimethylsiloxane), PA(Polyacrylate) and PDMS/DVB (Polydimethylsiloxane/Divinylbenzene) which were investigated to determine the selectivity and adsorption efficiency, PDMS/DVB fiber was selected for the extractions of the volatile flavor compounds due to its effectiveness. The qualitative analysis showed that the total amount of volatile flavor compounds in SDE method(130 species) was much more than that in SPME method(85 species). SPME method was more efficient for all the highly volatile compounds than SDE method, but on the other hand, low-volatile compounds such as fatty acids or high-molecular hydrocabons were detected in SDE method. SPME method based on a short-time sampling can be adjusted to favor a selected group compounds in tobacco. Furthermore this results could be used to estimate the aroma characteristics of cigarette blending by using a different type of tobacco with more effectiveness and convenience.

A Comparison of Volatile Flavor Characteristics of Chwi-namuls by Terpenoid Analysis (Terpenoid 분석을 통한 취나물류의 향기지표물질 비교)

  • Choi, Hyang-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.930-940
    • /
    • 2012
  • A comparison of essential oils composition of Aster tataricus L. (gaemichwi), Ligularia fischeri (gomchwi), Solidago virga-aurea var. asiatica Nakai (miyeokchwi), and Aster scaber (chamchwi) was performed by gas chromatography and mass spectrometry for the identification of volatile flavor characteristics in chwi-namuls. The essential oils were extracted by the hydro distillation extraction method. One hundred volatile flavor components were identified from gaemichwi essential oil. ${\alpha}$-Pinene (11.5%) was the most abundant compound, followed by myrcene (8.9%) and ${\beta}$-pinene (7.5%). Ninety-one volatile flavor components were identified from the essential oil of gomchwi. Aromadendrene (14.8%) was the most abundant component, followed by ${\beta}$-caryophyllene (7.6%) and 1-methyl-4-(1-methylethylidene)-cyclohexene (7.3%). Ninety-five volatile flavor constituents were detected in the essential oil of miyeokchwi, moreover, spathulenol (15.7%) was the most abundant component. Ninety-six volatile flavor constituents were detected in the essential oil of chamchwi. Epi-bicyclosesquiphellandrene (21.9%) was the most abundant component, followed by ${\beta}$-caryophyllene (9.5%) and ${\delta}$-terpinene (8.9%). The essential oil composition of gaemichwi was characterized by a higher contents of pinenes. The essential oil composition of gomchwi can be easily distinguished by the percentage of aromadendrene. Spathulenol and epi-bicyclosesquiphellandrene were regarded as the characteristic odorants of miyeokchwi and chamchwi, respectively.

Changes in the Volatile Flavor Components of Nutmeg(Myristica fragrans Houttuyn) during Aging (숙성에 의한 육두구(Myristica fragrans Houttuyn)의 향기성분 변화)

  • Kim, Hyean-Wee;Huh, Kyung-Taek;Choi, Chun-Un
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.760-765
    • /
    • 1989
  • The change of volatile flavor components In nutmeg (Kernels of the fruits of Myristica fragrans Houttuyn) during aging at $37^{\circ}C$ were studied by using a fused silica capillary GC & GC/MS. Volatile flavor components having the low boiling point showed a general decrease during aging, but those of the middle and high boiling point showed a reactionary tendency Myristicin and myristic acid among volatile flavor components showing the high boiling point had the amount increased considerably, and those were composed of 24.50% and 18.69% in aging for 6 months, respectively. The amount of whole volatile flavor concentrate showed the increased tendency till the aging period for 4 months, and then subsequently decreased.

  • PDF

Analysis of Volatile Flavor Components of the Essential Oil from Chrysanthemum coronarium var. spatiosum Bailey (쑥갓으로부터 추출한 정유의 휘발성 향기성분 분석)

  • Choi, Hyang-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.3
    • /
    • pp.185-192
    • /
    • 2022
  • This study investigated the volatile flavor components of the essential oil from Chrysanthemum coronarium var. spatiosumBailey. The essential oil obtained from the aerial parts of the plant by the hydrodistillation extraction method was analyzed by gas chromatography and gas chromatography-mass spectrometry. One hundred and one (99.11%) volatile flavor components were identified in the essential oil from the Chrysanthemum coronarium var. spatiosum Bailey. The major compounds were hexanedioic acid, bis(2-ethylhexyl) ester (12.45%), 6.10.14-trimethyl-2-pentadecanone (7.94%), 1-(phenylethynyl)-1-cyclohexanol (6.34%), α-farnesene (5.55%), phytol (4.99%), and α-caryophyllene (4.39%). When the volatile flavor components of Chrysanthemum coronarium var. spatiosum Bailey were classified by functional group, the content was high in the order of hydrocarbons, alcohols, esters, ketones, aldehydes, and phthalides. Sesquiterpene hydrocarbons were the most common hydrocarbons, mainly due to α-farnesene and α-caryophyllene. Among the alcohols, the content of aliphatic alcohols was significantly higher, mainly due to 1-(phenylethnyl)-1-cyclohexanol (6.34%) and phytol (4.99%). The analysis of the volatile flavor components of Chrysanthemum coronarium var. spatiosum Bailey in this study will provide useful information to consumers when purchasing food and to industries using fragrance ingredients.

Volatile Compounds of Ascidian, Halocynthia roretzi

  • CHOI Byeong-Dae;HO Chi-Tang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.6
    • /
    • pp.761-769
    • /
    • 1995
  • About 2.1g of pale yellow flavor concentrate was obtained from 10kg of chopped fresh ascidians through a Likens-Nickerson steam distilllation/solvent extraction. These concentrates could be fractionated to neutral $(91.5\%),\;basic\;(1.0\%),\;phenolic\;(3.2\%),\;and\;acidic\;(4.3\%)$ fractions. Total 65 volatile compounds were identified from those concentrates. The neutral fraction was representative flavor fraction which showed a similar flavor of total steam distillates of ascidian. The major compounds $(38.2\%\;of\;neutral\;fraction)$ were identified as carbon atoms 8 to 10 of alcohols. Among these volatile alcohols, 1-octanol, 2,7-decadien-1-o1, 3-octen-l-01, 7-decen-l-ol, and l-decanol were the dominent compounds found in neutral fraction. But the basic, phenolic, and acidic fractions differs from ascidian steam distillates flavor.

  • PDF

Processing Conditions of Low Salt Fermented Squid and its Flavor Components 1. Volatile Flavor Components of Low Salt Fermented Squid (저염 오징어젓갈 제조 방법 및 향미성분 1. 저염 오징어젓갈의 휘발성 향기성분)

  • 최성희;임성임;허성호;김영만
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.2
    • /
    • pp.261-267
    • /
    • 1995
  • Low-salted and fermented squid product, squid jeotkal was prepared with the addition of 10% salt and fermented for 50 day at 1$0^{\circ}C$. During fementation of squid, sensory evaluation and changes of volatile components were examined. Volatile flavor components in raw squid and low-salted squid jeotkal were extracted using a rotary evaporating system. The volatile concentrates were identified by GC and GC-MS. Major volatile components of raw squid were methional and 2-methyl-2-propanol. However, alcohols such as propanol, isoamyl alcohol, methionol and phenylethyl alcohol increased during the period of fermentation. The model reaction using microorganism was carried out, in order to confirm formation mechanism ofvolatile flavor compounds of the squid during fermentation. The main volatile components of Pseudomonas sp. D2 model system were isoamyl alcohol and acetoin. Those of Staphylococcus xylosus model system were isoamyl alcohol and phenylacetaldehyde.

  • PDF

Chracteristics of volatile flavor compounds in improved kochujang prepared with soybean koji during fermentation (콩고오지를 사용한 개량식고추장의 숙성과정 중 휘발성 향기성분의 특성)

  • Choi, Jin-Young;Lee, Taik-Soo;Park, Sung-Oh
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1144-1150
    • /
    • 1997
  • Volatile flavor components of soybean koji kochujang made from a glutinuous rice by improved method were analyzed by using a purge and trap method during fermentation, and identified with GC-MSD. Fifty-six volatile flavor components including 16 alcohols, 15 esters, 7 acids, 4 aldehydes, 5 alkanes, 3 ketones, 1 benzene, 1 alkene, 2 phenol and 2 others were found in improved kochujang. The number of volatile flavor components detected immediately after making kochujang were 32 and increased to 46 components after 30 day of fermentation. The most number 55 of volatile flavor components were found after 90 day of fermentation. Thirty-one kinds of volatile flavor components were commonly found through the fermentation period 9 alcohols such as 2-methyl-1-propanol, ethanol, 3-methyl-1-butanol, 8 esters such as methyl acetate, ethyl acetate, 2-methylpropyl acetate, 3 aldehydes such as butanal, acetaldehyde, furfural and 11 othesrs. Although the various types of peak areas (%) of volatile flavor components were shown in kochujang during the fermentation days, ethanol. ethyl acetate, ethyl butanoate, 2-methylpropyl acetate, 2-methyl-1-propanol and 3-methyl-1-butanol were mainly detected during fermentation. Those might be the major volatile flavor components in kochujang made by improved method. Peak area of ethanol was the highest one among the volatile flavor components at immediately after mashing and 90 day while ethyl acetate showed the highest Peak area after $30{\sim}60$ day of fermentation and 3-methyl-1-butanol showed the highest peak area after $120{\sim}150$ day of fermentation.

  • PDF

Studies on the Volatile Flavor Components of Fresh Ginseng (수삼중 휘발성 향기성분에 관한 연구)

  • 김만욱;박종대
    • Journal of Ginseng Research
    • /
    • v.8 no.1
    • /
    • pp.22-31
    • /
    • 1984
  • Volatile flavor components of fresh ginseng (Panax ginseng C.A. Meyer.) were studied. Steam distillate of fresh ginseng was extracted with ethyl ether and the extract was separated into four fraction: neutral, phenolic, acidic and basis fractions. The ethyl ether concentrates and neutral fraction were analyzed by a combination of SE-54 fused silica capillary gas chromatography and mass spectrometry. Major flavor components of fresh ginseng were predominantly mono(n +2) and sesquiterpenes(n +3) in over two hundred constituents. Of these, 28 were newly identified in volatile flavor components of fresh ginseng by GC-MS.

  • PDF

Generation of Sesame Flavor by the Thermal Reaction Technique

  • Yoo, Seung-Seok
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.110-115
    • /
    • 2007
  • In this study we investigated the volatile compounds that are generated in sesame and contribute to its characteristic flavor. Different reaction systems were used to examine how certain amino acids influenced flavor profiles, and also to evaluate the effects of sugar types on the distribution of those volatile compounds. The volatiles that were generated in each reaction system were selectively isolated and analyzed by gas chromatography and gas chromatography-mass spectrometry, respectively. Among the 20 identified compounds, nitrogen-containing alkylpyrazines were found to be the predominant volatiles. The alkylpyrazine amounts varied across the different model systems, with the total yield being highest in the arginine reaction mixture, followed by the alanine, serine, and lysine mixtures. In general, fructose generated the most extensive amount of volatiles compared to glucose and sucrose. However, the yield of specific flavor compounds varied according to the type of sugar used. Finally, the results clearly showed that a reaction temperature of $135^{\circ}C$ and a reaction time of 20 min generated the highest amount of volatile compounds.

Comparative Study on Volatile Flavor Compounds of Traditional Chinese-type Soy Sauces Prepared with Soybean and Defatted Soy Meal

  • Gao, Xian-Li;Zhao, Hai-Feng;Zhao, Mou-Ming;Cui, Chun;Ren, Jiao-Yan
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1447-1458
    • /
    • 2009
  • Volatile extracts obtained from traditional Chinese-type soy sauces prepared with soybean (SSSB) and defatted soy meal (SSDSM) by solid phase microextraction (SPME) and direct solvent extraction (DSE) were analyzed by gas chromatography-mass spectrometry (GC-MS). The volatile flavor compounds and relative contents of different chemical classes detected in SSSB and SSDSM were compared for their differences. Results showed that significant differences in both constituents of volatile flavor compounds and relative contents of different chemical classes were observed for both kinds of soy sauces. A total of 152 and 131 compounds were identified in SSSB and SSDSM, respectively, and 102 volatile flavor compounds were common in both kinds of soy sauces. Moreover, relative contents of acids, aldehydes, esters, furan(one)s, miscellaneous compounds, phenols, pyrazines, pyrrol(idinon)es, and sulfur-containing compounds in both kinds of soy sauces were all significantly different.