• Title/Summary/Keyword: void detection

Search Result 69, Processing Time 0.018 seconds

Air-coupled ultrasonic tomography of solids: 2 Application to concrete elements

  • Hall, Kerry S.;Popovics, John S.
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.31-43
    • /
    • 2016
  • Applications of ultrasonic tomography to concrete structures have been reported for many years. However, practical and effective application of this tool for nondestructive assessment of internal concrete condition is hampered by time consuming transducer coupling that limits the amount of ultrasonic data that can be collected. This research aims to deploy recent developments in air-coupled ultrasonic measurements of solids, described in Part 1 of this paper set, to concrete in order to image internal inclusions. Ultrasonic signals are collected from concrete samples using a fully air-coupled (contactless) test configuration. These air coupled data are compared to those collected using partial semi-contact and full-contact test configurations. Two samples are considered: a 150 mm diameter cylinder with an internal circular void and a prism with $300mm{\times}300mm$ square cross-section that contains internal damaged regions and embedded reinforcement. The heterogeneous nature of concrete material structure complicates the application and interpretation of ultrasonic measurements and imaging. Volumetric inclusions within the concrete specimens are identified in the constructed velocity tomograms, but wave scattering at internal interfaces of the concrete disrupts the images. This disruption reduces defect detection accuracy as compared with tomograms built up of data collected from homogeneous solid samples (PVC) that are described in Part 1 of this paper set. Semi-contact measurements provide some improvement in accuracy through higher signal-to-noise ratio while still allowing for reasonably rapid data collection.

Risk assessment for development of consecutive shield TBM technology (연속굴착형 쉴드 TBM 기술 개발을 위한 리스크 평가)

  • Kibeom Kwon;Hangseok Choi;Chaemin Hwang;Sangyeong Park;Byeonghyun Hwang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.4
    • /
    • pp.303-314
    • /
    • 2024
  • Recently, the consecutive shield tunnel boring machine (TBM) has gained attention for its potential to enhance TBM penetration rates. However, its development requires a thorough risk assessment due to the unconventional nature of its equipment and hydraulic systems, coupled with the absence of design or construction precedents. This study investigated the causal relationships between four accidents and eight relevant sources associated with the consecutive shield TBM. Subsequently, risk levels were determined based on expert surveys and a risk matrix technique. The findings highlighted significant impacts associated with collapses or surface settlements and the likelihood of causal combinations leading to misalignment. Specifically, this study emphasized the importance of proactive mitigation measures to address collapses or surface settlements caused by inadequate continuous tail void backfill or damaged thrust jacks. Furthermore, it is recommended to develop advanced non-destructive testing technology capable of comprehensive range detection across helical segments, to design a sequential thrust jack propulsion system, and to determine an optimal pedestal angle.

Improvement of Strain Detection Accuracy of Aircraft FBG Sensors Using Stationary Wavelet Transform (정상 웨이블릿 변환을 이용한 항공기 FBG 센서의 변형률 탐지 정확도 향상)

  • Son, Yeong-Jun;Shin, Hyun-Sung;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.4
    • /
    • pp.273-280
    • /
    • 2019
  • There are many studies that use structure health monitoring to reduce maintenance costs for aircraft and to increase aircraft utilization. Many studies on FBG sensors are also being conducted. However, if the FBG sensor is installed inside the composite, voids will occur between the layers of the composite, resulting in signal split problem. In addition, the FBG sensor is not affected by electromagnetic waves, but will produce electromagnetic noise caused by electronic equipment during post-processing. In this paper, to reduce the error caused by these noises, the stationary wavelet transform, which has the characteristics of movement immutability and is efficient in nonlinear signal analysis, is presented. And in the above situation, we found that noise rejection performance of stationary wavelet transform was better compared with the wavelet packet transform.

Novel Anomaly Detection Method for Proactive Prevention from a Mobile E-finance Accident with User"s Input Pattern Analysis (모바일 디바이스에서의 전자금융사고 예방을 위한 사용자입력패턴분석 기반 이상증후 탐지 방법)

  • Seo, Ho-Jin;Kim, Huy-Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.4
    • /
    • pp.47-60
    • /
    • 2011
  • With the increase in the use of mobile banking service, mobile banking has become an attractive target to attackers. Even though many security measures are applied to the current mobile banking service, some threats such as physical theft or penetration to a mobile device from remote side are still remained as unsolved. With aiming to fill this void, we propose a novel approach to prevent e-financial incidents by analyzing mobile device user's input patterns. This approach helps us to distinguish between original user's usage and attacker's usage through analyzing personal input patterns such as input time-interval, finger pressure level on the touch screen. Our proposed method shows high accuracy, and is effective to prevent the e-finance incidents proactively.

Design and Fabrication of Rogowski-type Partial Discharge Sensor for Insulation Diagnosis of Cast-Resin Transformers (몰드 변압기의 절연 진단을 위한 로고우스키형 부분방전 센서의 설계 및 제작)

  • Lee, Gyeong-Yeol;Kim, Sung-Wook;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.594-602
    • /
    • 2022
  • Cast-resin transformers are widely installed in various electrical power systems because of their low operating cost and low influence on external environmental factors. However, when they have an internal defect during the manufacturing process or operation, a partial discharge (PD) occurs, and eventually destroys the insulation. In this paper, a Rogowski-type PD sensor was studied to replace commercial PD sensors used for the insulation diagnosis of power apparatus. The proposed PD sensor was manufactured with four different types of PCB-based winding structures, and it was analyzed in terms of the detection characteristics for standard calibration pulses and the changes of the output voltage according to the distance. The output increased linearly in accordance with the applied discharge amount. It was confirmed that the hexagon structure sensor had the highest sensitivity, because the winding cross-sectional area of the sensor was larger than others. In addition, as the distance from the defect increased, the output voltage of the sensors decreased by 7.32% on average. It was also confirmed that the attenuation rate according to the distance decreased as the input discharge amount increased. For the application of this new type sensor, PD electrode system was designed to simulate the void defect. Waveforms and PRPD patterns measured by the proposed PD sensors at DIV and 120% of DIV were the same as the results measured by MPD 600 based on IEC 60270. The proposed PD sensors can be installed on the inner wall of the transformer tank by coating its surfaces with a non-conductive material; therefore, it is possible to detect internal defects more effectively at a closer distance from the defect than the conventional sensors.

Developing the Electrode Board for Bio Phase Change Template (바이오 상변화 Template 위한 전극기판 개발)

  • Li, Xue Zhe;Yoon, Junglim;Lee, Dongbok;Kim, Sookyung;Kim, Ki-Bum;Park, Young June
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.715-719
    • /
    • 2009
  • The phase change electrode board for the bio-information detection through electrical property response of phase change material was developed in this study. We manufactured the electrode board using Aluminum first that is widely used in conventional semiconductor device process. Without further treatment, these aluminum electrodes tend to contain voids in PETEOS(plasma enhanced tetraethyoxysilane) material that are easily detected by cross-sectional SEM(Scanning Electron Microscope). The voids can be easily attacked and transformed into holes in between PETEOS and electrodes after etch back and washing process. In order to resolve this issue of Al electrode board, we developed a electrode board manufacturing method using low resistivity TiN, which has advantages in terms of the step-coverage of phase change($Ge_2Sb_2Te_5$, GST) thin film as well as thermodynamic stability, without etch back and washing process. This TiN material serves as the top and bottom electrode in PRAM(Phase-change Random Access Memory). The good connection between the TiN electrode and GST thin film was confirmed by observing the cross-section of TiN electrode board using SEM. The resistances of amorphous and crystalline GST thin film on TiN electrodes were also measured, and 1000 times difference between the amorphous and crystalline resistance of GST thin film was obtained, which is well enough for the signal detection.

Determination of fluoride in fluorite mine wastewater by ion chromatography with post-wash technique (후세척-이온크로마토그래피를 이용한 형석 광산 폐수 중 플루오라이드 정량)

  • Song, Kyung-Sun;Eum, Chul-Hun;Kim, Sang-Yeon
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.383-388
    • /
    • 2006
  • Simple post-wash method by ion chromatography (IC) was established for the rapid and precise determination of fluoride ion in wastewater from mine in fluorite mineralized area. High sulfate in sample was retained in a pre-column and less strongly held fluoride ion was transferred to the principal separation system using modified conventional IC with switching technique. An analytical column with high capacity (AS 9 HC) was used as a pre-column to retain the amount of high sulfate. A guard column (AG 14) as a separation column was used to increase the response of fluoride and reduce the system pressure. According to the recovery of fluoride ion with one detector and the observation of sulfate peak with another conductivity detector, the optimum switching time of 10-port chromatographic injector was 4.3 min. The limit of detection (S/N = 3) of fluoride in synthetic solution containing $500mg\;L^{-1}$ sulfate was $2.4{\mu}g/L$, with $25{\mu}L$ sample volume.

An Experimental Study for Characteristics Evaluation of Cement Mortar Using Infrared Thermography Technique (적외선 화상기법을 이용한 시멘트 모르타르 특성의 실험적 평가)

  • Kwon, Seung-Jun;Maria, Q. Feng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.53-59
    • /
    • 2010
  • Recently, NDTs (Non-Destructive Techniques) using infrared camera are widely studied for detection of damage and void in RC (reinforced concrete) structures and they are also considered as an effective techniques for maintenance of infrastructures. The temperature on concrete surface depends on material and thermal properties such as specific heat, thermal conductivity, and thermal diffusion coefficient. Different porosity on cement mortar due to different mixture proportions can show different heat behavior in cooling stage. The porosity can affect physical and durability properties like strength and chloride diffusion coefficient as well. In this paper, active thermography which uses flash for heat induction is utilized and thermal characteristics on surface are evaluated. Samples of cement mortar with W/C (water to cement ratio) of 0.55 and 0.65 are prepared and physical properties like porosity, compressive strength, and chloride diffusion coefficient are evaluated. Then infrared thermography technique is carried out in a constant room condition (temperature $20{\sim}22^{\circ}C$ and relative humidity 55-60%). The mortar samples with higher porosity shows higher residual temperature at the cooling stage and also shows reduced critical time which shows constant temperature due to back wall effect. Furthermore, simple equation for critical time of back wall effect is suggested with porosity and experimental constants. These characteristics indicate the applicability of infrared thermography as an NDT for quality assessment of cement based composite like concrete. Physical properties and thermal behavior in cement mortar with different porosity are analyzed in discussed in this paper.

Calculation method and application of natural frequency of integrated model considering track-beam-bearing-pier-pile cap-soil

  • Yulin Feng;Yaoyao Meng;Wenjie Guo;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.81-89
    • /
    • 2023
  • A simplified calculation method of natural vibration characteristics of high-speed railway multi-span bridge-longitudinal ballastless track system is proposed. The rail, track slab, base slab, main beam, bearing, pier, cap and pile foundation are taken into account, and the multi-span longitudinal ballastless track-beam-bearing-pier-cap-pile foundation integrated model (MBTIM) is established. The energy equation of each component of the MBTIM based on Timoshenko beam theory is constructed. Using the improved Fourier series, and the Rayleigh-Ritz method and Hamilton principle are combined to obtain the extremum of the total energy function. The simplified calculation formula of the natural vibration frequency of the MBTIM under the influence of vertical and longitudinal vibration is derived and verified by numerical methods. The influence law of the natural vibration frequency of the MBTIM is analyzed considering and not considering the participation of each component of the MBTIM, the damage of the track interlayer component and the stiffness change of each layer component. The results show that the error between the calculation results of the formula and the numerical method in this paper is less than 3%, which verifies the correctness of the method in this paper. The high-order frequency of the MBTIM is significantly affected considering the track, bridge pier, pile soil and pile cap, while considering the influence of pile cap on the low-order and high-order frequency of the MBTIM is large. The influence of component damage such as void beneath slab, mortar debonding and fastener failure on each order frequency of the MBTIM is basically the same, and the influence of component damage less than 10m on the first fourteen order frequency of the MBTIM is small. The bending stiffness of track slab and rail has no obvious influence on the natural frequency of the MBTIM, and the bending stiffness of main beam has influence on the natural frequency of the MBTIM. The bending stiffness of pier and base slab only has obvious influence on the high-order frequency of the MBTIM. The natural vibration characteristics of the MBTIM play an important guiding role in the safety analysis of high-speed train running, the damage detection of track-bridge structure and the seismic design of railway bridge.